Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Hydride Transfer Chemistry.

Artykuły w czasopismach na temat „Hydride Transfer Chemistry”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydride Transfer Chemistry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

McSkimming, Alex, Jordan W. Taylor, and W. Hill Harman. "Assembly and Redox-Rich Hydride Chemistry of an Asymmetric Mo2S2 Platform." Molecules 25, no. 13 (2020): 3090. http://dx.doi.org/10.3390/molecules25133090.

Pełny tekst źródła
Streszczenie:
Although molybdenum sulfide materials show promise as electrocatalysts for proton reduction, the hydrido species proposed as intermediates remain poorly characterized. We report herein the synthesis, reactions and spectroscopic properties of a molybdenum-hydride complex featuring an asymmetric Mo2S2 core. This molecule displays rich redox chemistry with electrochemical couples at E½ = −0.45, −0.78 and −1.99 V vs. Fc/Fc+. The corresponding hydrido-complexes for all three redox levels were isolated and characterized crystallographically. Through an analysis of solid-state bond metrics and DFT ca
Style APA, Harvard, Vancouver, ISO itp.
2

Fukuzumi, Shunichi, Toshiaki Kitano, Masashi Ishikawa, and Yoshiharu Matsuda. "Electron transfer chemistry of hydride and carbanion donors. Hydride and carbanion transfer via electron transfer." Chemical Physics 176, no. 2-3 (1993): 337–47. http://dx.doi.org/10.1016/0301-0104(93)80244-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chan, Bun, and Masanari Kimura. "High-level quantum chemistry exploration of reduction by group-13 hydrides: insights into the rational design of bio-mimic CO2 reduction." Electronic Structure 4, no. 4 (2022): 044001. http://dx.doi.org/10.1088/2516-1075/ac9bb3.

Pełny tekst źródła
Streszczenie:
Abstract In the present study, we have used computational quantum chemistry to explore the reduction of various types of substrates by group-13 hydrides. We use the high-level L-W1X method to obtain the energies for the constituent association and hydride transfer reactions. We find that the hydride transfer reactions are highly exothermic, while the preceding association reactions are less so. Thus, improving the thermodynamics of substrate association may improve the overall process. Among the various substrates, amine and imine show the strongest binding, while CO2 shows the weakest. Betwee
Style APA, Harvard, Vancouver, ISO itp.
4

Bohra, Anupama, Pradeep K. Sharma, and Kalyan K. Banerji. "Kinetics and Mechanism of the Oxidation of Aliphatic Aldehydes by Benzyltrimethylammonium Chlorobromate." Journal of Chemical Research 23, no. 5 (1999): 308–9. http://dx.doi.org/10.1177/174751989902300506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhao, Yin, Helmut W. Schmalle, Thomas Fox, Olivier Blacque, and Heinz Berke. "Hydride transfer reactivity of tetrakis(trimethylphosphine)(hydrido)(nitrosyl)molybdenum(0)." Dalton Trans., no. 1 (2006): 73–85. http://dx.doi.org/10.1039/b511797f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wel, Hans van der, Nico M. M. Nibbering, and Margaret M. Kayser. "A gas phase study of the regioselective BH4− reduction of some 2-substituted maleic anhydrides." Canadian Journal of Chemistry 66, no. 10 (1988): 2587–94. http://dx.doi.org/10.1139/v88-406.

Pełny tekst źródła
Streszczenie:
Gas phase ion/molecule reactions in a Fourier transform ion cyclotron resonance mass spectrometer have been carried out for reductions of isotopically labelled citraconic (methylmaleic), phenylmaleic, and ethoxymaleic anhydrides by BH4−. In citraconic anhydride the carbonyl group neighbouring the methyl substituent is reduced preferentially in agreement with the ab initio calculations, which show the higher LUMO coefficients at this site. Hydride ion transfer to the olefinic double bond occurs as well; however, in that case no preference for either of the carbon atoms is observed. In phenylmal
Style APA, Harvard, Vancouver, ISO itp.
7

Zaman, Khan M., Norio Nishimura, Shunzo Yamamoto, and Yoshimi Sueishi. "Hydride transfer reactions of Michler's hydride with different ?-accetors." Journal of Physical Organic Chemistry 7, no. 6 (1994): 309–15. http://dx.doi.org/10.1002/poc.610070607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

FUKUZUMI, SHUNICHI, and SOUTA NOURA. "Cobalt(III) Porphyrin-catalysed Hydride Reduction of 10-Methylacridinium ion and Hydrometallation of Alkenes and Alkynes by Tributyltin Hydride." Journal of Porphyrins and Phthalocyanines 01, no. 03 (1997): 251–58. http://dx.doi.org/10.1002/(sici)1099-1409(199707)1:3<251::aid-jpp24>3.0.co;2-p.

Pełny tekst źródła
Streszczenie:
Cobalt(III) tetraphenylporphyrin catalyses a hydride transfer reaction from tributyltin hydride to 10-methylacridinium ion via the formation of hydridocobalt(III) tetraphenylporphyrin, which is the rate-determining step, followed by facile hydride transfer from the hydridocobalt(III) porphyrin to 10-methylacridinium ion in acetonitrile. Tributyltin hydride is also effective for the hydrometallation of alkenes and alkynes with cobalt(III) tetraphenylporphyrin to yield the corresponding organocobalt(III) porphyrins regioselectively. The hydrometallation is suggested to proceed via the hydride tr
Style APA, Harvard, Vancouver, ISO itp.
9

Tassano, Erika, and Mélanie Hall. "Enzymatic self-sufficient hydride transfer processes." Chemical Society Reviews 48, no. 23 (2019): 5596–615. http://dx.doi.org/10.1039/c8cs00903a.

Pełny tekst źródła
Streszczenie:
Enzymatic self-sufficient hydride transfer processes. The hydride shuttle used in catalytic quantities is typically a nicotinamide cofactor (full: reduced; empty: oxidized). Ideally, no electron is lost to ‘the outside’ and no waste is produced.
Style APA, Harvard, Vancouver, ISO itp.
10

Casey, Charles P., and Jeffrey B. Johnson. "Kinetic isotope effect evidence for the concerted transfer of hydride and proton from hydroxycyclopentadienyl ruthenium hydride in solvents of different polarities and hydrogen bonding ability." Canadian Journal of Chemistry 83, no. 9 (2005): 1339–46. http://dx.doi.org/10.1139/v05-140.

Pełny tekst źródła
Streszczenie:
The tolyl analogue of Shvo's hydroxycyclopentadienyl ruthenium hydride (4) efficiently transfers a hydride and proton to benzaldehyde or acetophenone to produce an alcohol. This reduction can be performed in toluene, methylene chloride, and THF. Reduction of benzaldehyde in toluene and methylene chloride occurs approximately 300 times faster than in THF at 0 °C. Reduction of acetophenone occurs between 75 and 150 times slower than benzaldehyde at 0 °C in each respective solvent. Despite the differences in rate, mechanistic studies have provided evidence for a similar concerted transfer of acid
Style APA, Harvard, Vancouver, ISO itp.
11

Pankratov, Alexei, and Boris Drevko. "An approach to quantum chemical consideration of "hydride" transfer reaction." Journal of the Serbian Chemical Society 69, no. 6 (2004): 431–39. http://dx.doi.org/10.2298/jsc0406431p.

Pełny tekst źródła
Streszczenie:
An approach to the quantum chemical study of "hydride ion" transfer has been proposed, according to which the sequences of changes in ionization potentials, enthalpies and free energies of the affinities to the hydride ion, to the hydrogen atom and to the proton of substrates molecules and their derivatives (cations, radicals, anions), are compared with the experimentally substantiated series of "hydride" mobility. It has been established that the experimental series of "hydride" mobility for six chalcogenopyrans based on "semicyclic" 1,5-diketones is in conformity with the computed ionization
Style APA, Harvard, Vancouver, ISO itp.
12

Brouwer, D. M., and A. A. Kiffen. "Hydride transfer reactions: IV. Intramolecular hydride shifts in protonated aldehydes." Recueil des Travaux Chimiques des Pays-Bas 92, no. 8 (2010): 906–14. http://dx.doi.org/10.1002/recl.19730920812.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Anne, Agnès, and Jacques Moiroux. "Thermodynamic characteristics of NADH/NAD+ analogues in acetonitrile: 2-methyl, 4-methyl and 2,4-dimethyl 1-benzyl-dihydronicotinamides and the corresponding pyridinium species." Canadian Journal of Chemistry 73, no. 4 (1995): 531–38. http://dx.doi.org/10.1139/v95-068.

Pełny tekst źródła
Streszczenie:
Procedures were elaborated for the syntheses of the title compounds. The thermodynamic changes brought about by each methyl substitution were then determined quantitatively. In acetonitrile, the respective one-electron oxidation and one-electron reduction potentials of the NADH and NAD+ analogues were obtained by means of direct and indirect (using ferrocene mediators) cyclic voltammetry. The redox potentials of formal hydride transfers were deduced from the studies of equilibrated reactions occurring between the analogues. The pKa's of the cation radicals ensued. Keywords: NADH/NAD+ methylate
Style APA, Harvard, Vancouver, ISO itp.
14

Zhang, Fanjun, Jiong Jia, Shuli Dong, Wenguang Wang, and Chen-Ho Tung. "Hydride Transfer from Iron(II) Hydride Compounds to NAD(P)+ Analogues." Organometallics 35, no. 8 (2016): 1151–59. http://dx.doi.org/10.1021/acs.organomet.6b00179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Silva, Rosalice Mendonça, and Marcetta Y. Darensbourg. "The Hydride Transfer Ability of a Neutral Hydride, CP2Nb(H)CO." Journal Of The Brazilian Chemical Society 3, no. 3 (1992): 55–60. http://dx.doi.org/10.5935/0103-5053.19920011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Formosinho, Sebasti�o J. "Theoretical studies of hydride transfer reactions." Journal of Physical Organic Chemistry 3, no. 5 (1990): 325–31. http://dx.doi.org/10.1002/poc.610030509.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Belkova, N. V., E. I. Gutsul, E. S. Shubina, and L. M. Epstein. "Proton Transfer to Organometallic Hydrides via Unconventional Hydrogen Bonding: Problems and Perspectives." Zeitschrift für Physikalische Chemie 217, no. 12 (2003): 1525–38. http://dx.doi.org/10.1524/zpch.217.12.1525.20482.

Pełny tekst źródła
Streszczenie:
AbstractThis review summarizes the spectral and theoretical results concerning different ways of proton transfer through hydrogen bonds (HB) to metal atoms (XH···M) and hydride ligands (XH···HM) leading to classical and nonclassical cationic hydrides. The spectral (NMR, IR, UV-Vis in the temperature range 190–290K) and theoretical studies of the structural and energetic characteristics of HB intermediates and proton transfer allow the representation of the experimental energy profiles. The problems concerning the influence of different factors on the processes and potential energy surfaces req
Style APA, Harvard, Vancouver, ISO itp.
18

Holewinski, Adam. "Hydride transfer gets a recharge." Nature Catalysis 6, no. 4 (2023): 296–97. http://dx.doi.org/10.1038/s41929-023-00946-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Cui, Xin, Wei Huang, and Lipeng Wu. "Zirconium-hydride-catalyzed transfer hydrogenation of quinolines and indoles with ammonia borane." Organic Chemistry Frontiers 8, no. 18 (2021): 5002–7. http://dx.doi.org/10.1039/d1qo00672j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Connelly Robinson, Samantha J., Christopher M. Zall, Deanna L. Miller, John C. Linehan, and Aaron M. Appel. "Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel." Dalton Transactions 45, no. 24 (2016): 10017–23. http://dx.doi.org/10.1039/c6dt00309e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Hong, Baoyu, Majd Haddad, Frank Maley, Jan H. Jensen, and Amnon Kohen. "Hydride Transfer versus Hydrogen Radical Transfer in Thymidylate Synthase." Journal of the American Chemical Society 128, no. 17 (2006): 5636–37. http://dx.doi.org/10.1021/ja060196o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Pitman, C. L., O. N. L. Finster, and A. J. M. Miller. "Cyclopentadiene-mediated hydride transfer from rhodium complexes." Chemical Communications 52, no. 58 (2016): 9105–8. http://dx.doi.org/10.1039/c6cc00575f.

Pełny tekst źródła
Streszczenie:
Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C–H bond-forming reductive elimination from the fleeting rhodium hydride.
Style APA, Harvard, Vancouver, ISO itp.
23

Ikeda, Glenn, and Ronald Kluger. "Deuterium labeling as a test of intramolecular hydride mechanisms in the fragmentation of 2-(1-hydroxybenzyl)-N1′-methylthiamin." Canadian Journal of Chemistry 83, no. 9 (2005): 1277–80. http://dx.doi.org/10.1139/v05-146.

Pełny tekst źródła
Streszczenie:
2-(1-Hydroxybenzyl)-N1′-methylthiamin (1b) is a model for the addition intermediate in the thiamin catalyzed benzoin condensation. However, N-alkylation alters the reactivity of the compound: instead of undergoing base-catalyzed formation of benzaldehyde and N1′-methylthiamin, it rapidly forms trimethyl amino pyrimidine (2b) and phenylthiazole ketone (3). The base-catalyzed fragmentation process is faster than the analogous enzymic reaction (in benzoylformate decarboxylase) under the same conditions. One possible mechanism for the rapid fragmentation is an internal hydride transfer from α-C2 t
Style APA, Harvard, Vancouver, ISO itp.
24

Coufourier, Sébastien, Daouda Ndiaye, Quentin Gaignard Gaillard, et al. "Iron-catalyzed chemoselective hydride transfer reactions." Tetrahedron 90 (June 2021): 132187. http://dx.doi.org/10.1016/j.tet.2021.132187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Francisco Sánchez-Viesca and Reina Gómez. "On the chemistry of Beckurt’s test for physostigmine: A novel hydride transfer." Magna Scientia Advanced Research and Reviews 8, no. 2 (2023): 022–25. http://dx.doi.org/10.30574/msarr.2023.8.2.0098.

Pełny tekst źródła
Streszczenie:
Beckurt treated physostigmine hydrochloride with dilute potassium permanganate solution and observed separation of manganese dioxide. Since at first sight there is no reaction site for this oxidation, it was interesting to clear up the reaction route of this test. Acid hydrolysis of this O-phenylcarbamate yielded the phenolic derivative of the three-ring indole alkaloid hydrochloride. Now are present at para-position an electrodotic group and a positive charged nitrogen atom. However, this nitrogen has an octet of electrons; thus, for reaction to occur a hydride ion must be displaced. This can
Style APA, Harvard, Vancouver, ISO itp.
26

Wu, Jinghua, and Zhiqiang Ma. "Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis." Organic Chemistry Frontiers 8, no. 24 (2021): 7050–76. http://dx.doi.org/10.1039/d1qo01139a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ai, Wenying, Rui Zhong, Xufang Liu, and Qiang Liu. "Hydride Transfer Reactions Catalyzed by Cobalt Complexes." Chemical Reviews 119, no. 4 (2018): 2876–953. http://dx.doi.org/10.1021/acs.chemrev.8b00404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Osipova, Elena S., Sergey A. Kovalenko, Ekaterina S. Gulyaeva, et al. "The Dichotomy of Mn–H Bond Cleavage and Kinetic Hydricity of Tricarbonyl Manganese Hydride Complexes." Molecules 28, no. 8 (2023): 3368. http://dx.doi.org/10.3390/molecules28083368.

Pełny tekst źródła
Streszczenie:
Acid-base characteristics (acidity, pKa, and hydricity, ΔG°H− or kH−) of metal hydride complexes could be a helpful value for forecasting their activity in various catalytic reactions. Polarity of the M–H bond may change radically at the stage of formation of a non-covalent adduct with an acidic/basic partner. This stage is responsible for subsequent hydrogen ion (hydride or proton) transfer. Here, the reaction of tricarbonyl manganese hydrides mer,trans–[L2Mn(CO)3H] (1; L = P(OPh)3, 2; L = PPh3) and fac–[(L–L′)Mn(CO)3H] (3, L–L′ = Ph2PCH2PPh2 (dppm); 4, L–L′ = Ph2PCH2–NHC) with organic bases
Style APA, Harvard, Vancouver, ISO itp.
29

Peru, Filippo, Seyedhosein Payandeh, Torben R. Jensen, Georgia Charalambopoulou, and Theodore Steriotis. "Destabilization of the LiBH4–NaBH4 Eutectic Mixture through Pore Confinement for Hydrogen Storage." Inorganics 11, no. 3 (2023): 128. http://dx.doi.org/10.3390/inorganics11030128.

Pełny tekst źródła
Streszczenie:
Both LiBH4 and NaBH4 are well known for having high hydrogen contents, but also high decomposition temperatures and slow hydrogen absorption–desorption kinetics, preventing their use for hydrogen storage applications. The low melting temperature (219 °C) of their eutectic mixture 0.71 LiBH4–0.29 NaBH4 allowed the synthesis of a new composite material through the melt infiltration of the hydrides into the ~5 nm diameter pores of a CMK-3 type carbon. A composite of 0.71 LiBH4–0.29 NaBH4 and non-porous graphitic carbon discs was also prepared by similar methods for comparison. Both composites sho
Style APA, Harvard, Vancouver, ISO itp.
30

Kreevoy, Maurice M., and Ann T. Kotchevar. "Dynamics of hydride transfer between NAD+ analogs." Journal of the American Chemical Society 112, no. 9 (1990): 3579–83. http://dx.doi.org/10.1021/ja00165a049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Chen, Bao-Long, Sheng-Yi Yan, and Xiao-Qing Zhu. "A Mechanism Study of Redox Reactions of the Ruthenium-oxo-polypyridyl Complex." Molecules 28, no. 11 (2023): 4401. http://dx.doi.org/10.3390/molecules28114401.

Pełny tekst źródła
Streszczenie:
Over the years, RuIV(bpy)2(py)(O)2+([RuIVO]2+) has garnered considerable interest owing to its extensive use as a polypyridine mono-oxygen complex. However, as the active-site Ru=O bond changes during the oxidation process, [RuIVO]2+ can be used to simulate the reactions of various high-priced metallic oxides. In order to elucidate the hydrogen element transfer process between the Ruthenium-oxo-polypyridyl complex and organic hydride donor, the current study reports on the synthesis of [RuIVO]2+, a polypyridine mono-oxygen complex, in addition to 1H and 3H (organic hydride compounds) and 1H de
Style APA, Harvard, Vancouver, ISO itp.
32

Bunting, John W., and Mark A. Luscher. "Kinetics of hydride transfer between nitrogen heteroaromatic cations." Canadian Journal of Chemistry 66, no. 10 (1988): 2524–31. http://dx.doi.org/10.1139/v88-396.

Pełny tekst źródła
Streszczenie:
The kinetics of the reduction of the 3-cyano-1-methylquinolinium, 4-cyano-2-methylisoquinolinium, and 2-methyl-5-nitro-isoquinolinium cations by 9,10-dihydro-10-methylacridine, and also the reduction of these same three cations as well as the 10-methylacridinium cation by 5,6-dihydro-5-methylphenanthridine, have been investigated in 20% acetonitrile – 80% water, ionic strength 1.0, 25 °C. The reactions of the 2-methyl-5-nitroisoquinolinium cation with both reductants, and also of the 4-cyano-2-methylisoquinolinium cation with 9,10-dihydro-10-methylacridine, display kinetic saturation effects i
Style APA, Harvard, Vancouver, ISO itp.
33

Chen, Juan, and Bo Liu. "Remote Chirality Transfer through Medium Cycle Formation/Intramolecular Hydride Transfer Cascade." Chinese Journal of Chemistry 38, no. 3 (2020): 305–6. http://dx.doi.org/10.1002/cjoc.201900471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Weerasooriya, Ravindra B., Jonathan L. Gesiorski, Abdulaziz Alherz, et al. "Kinetics of Hydride Transfer from Catalytic Metal-Free Hydride Donors to CO2." Journal of Physical Chemistry Letters 12, no. 9 (2021): 2306–11. http://dx.doi.org/10.1021/acs.jpclett.0c03662.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Barrett, Seth M., Bethany M. Stratakes, Matthew B. Chambers, et al. "Mechanistic basis for tuning iridium hydride photochemistry from H2 evolution to hydride transfer hydrodechlorination." Chemical Science 11, no. 25 (2020): 6442–49. http://dx.doi.org/10.1039/d0sc00422g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Bansal, Varsha, Pradeep K. Sharma, and Kalyan K. Banerji. "Kinetics and Mechanism of the Oxidation of Substituted Benzaldehydes by Oxo(salen)manganese(v) Complexes." Journal of Chemical Research 23, no. 8 (1999): 480–81. http://dx.doi.org/10.1177/174751989902300813.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Zaman, Khan M., Shunzo Yamamoto, Norio Nishimura, Junichi Maruta, and Shunichi Fukuzumi. "Charge-Transfer Complexes Acting as Real Intermediates in Hydride Transfer from Michler's Hydride to 2,3-Dichloro-5,6-dicyano-p-benzoquinone via Electron Transfer." Journal of the American Chemical Society 116, no. 26 (1994): 12099–100. http://dx.doi.org/10.1021/ja00105a079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ali, Qaim, Yongyong Chen, Ruixue Zhang, et al. "The Origin of Stereoselectivity in the Hydrogenation of Oximes Catalyzed by Iridium Complexes: A DFT Mechanistic Study." Molecules 27, no. 23 (2022): 8349. http://dx.doi.org/10.3390/molecules27238349.

Pełny tekst źródła
Streszczenie:
Herein the reaction mechanism and the origin of stereoselectivity of asymmetric hydrogenation of oximes to hydroxylamines catalyzed by the cyclometalated iridium (III) complexes with chiral substituted single cyclopentadienyl ligands (Ir catalysts A1 and B1) under acidic condition were unveiled using DFT calculations. The catalytic cycle for this reaction consists of the dihydrogen activation step and the hydride transfer step. The calculated results indicate that the hydride transfer step is the chirality-determining step and the involvement of methanesulfonate anion (MsO−) in this reaction i
Style APA, Harvard, Vancouver, ISO itp.
39

Charette, Bronte J., Joseph W. Ziller, and Alan F. Heyduk. "Exploring Ligand-Centered Hydride and H-Atom Transfer." Inorganic Chemistry 60, no. 7 (2021): 5367–75. http://dx.doi.org/10.1021/acs.inorgchem.1c00351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lee, In-Sook Han, Hyun Joo Kil, and Young Ran Ji. "Reactivities of acridine compounds in hydride transfer reactions." Journal of Physical Organic Chemistry 20, no. 7 (2007): 484–90. http://dx.doi.org/10.1002/poc.1182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wu, Yun Dong, and K. N. Houk. "Theoretical transition structures for hydride transfer to methyleneiminium ion from methylamine and dihydropyridine. On the nonlinearity of hydride transfers." Journal of the American Chemical Society 109, no. 7 (1987): 2226–27. http://dx.doi.org/10.1021/ja00241a074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wang, Yuanyuan, Qian Zhu, Yan Wei, et al. "Catalytic hydrodehalogenation over supported gold: Electron transfer versus hydride transfer." Applied Catalysis B: Environmental 231 (September 2018): 262–68. http://dx.doi.org/10.1016/j.apcatb.2018.03.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, Bin, Dhika Aditya Gandamana, Fabien Gagosz, and Shunsuke Chiba. "Diastereoselective Intramolecular Hydride Transfer under Brønsted Acid Catalysis." Organic Letters 21, no. 7 (2019): 2298–301. http://dx.doi.org/10.1021/acs.orglett.9b00590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

He, Bin, Phannarath Phansavath, and Virginie Ratovelomanana-Vidal. "Rhodium-catalyzed asymmetric transfer hydrogenation of 4-quinolone derivatives." Organic Chemistry Frontiers 7, no. 8 (2020): 975–79. http://dx.doi.org/10.1039/c9qo01514k.

Pełny tekst źródła
Streszczenie:
4-Quinolone derivatives were conveniently reduced to 1,2,3,4-tetrahydroquinoline-4-ols with excellent enantioselectivities through asymmetric transfer hydrogenation using a tethered rhodium complex and formic acid/triethylamine as the hydride source.
Style APA, Harvard, Vancouver, ISO itp.
45

Angle, Steven R., and Heather L. Mattson-Arnaiz. "Facile 1,3-hydride transfer in a cycloheptyl cation." Journal of the American Chemical Society 114, no. 25 (1992): 9782–86. http://dx.doi.org/10.1021/ja00051a009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Thorpe, Ian F., and Charles L. Brooks. "Conformational Substates Modulate Hydride Transfer in Dihydrofolate Reductase." Journal of the American Chemical Society 127, no. 37 (2005): 12997–3006. http://dx.doi.org/10.1021/ja053558l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Yuasa, Junpei, Shunsuke Yamada, and Shunichi Fukuzumi. "A Mechanistic Dichotomy in Scandium Ion-Promoted Hydride Transfer of an NADH Analogue: Delicate Balance between One-Step Hydride-Transfer and Electron-Transfer Pathways." Journal of the American Chemical Society 128, no. 46 (2006): 14938–48. http://dx.doi.org/10.1021/ja064708a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Liu, Li, Elizabeth S. Richards, and James M. Farrar. "Hydride transfer reaction dynamics of OD++C3H6." Journal of Chemical Physics 126, no. 24 (2007): 244315. http://dx.doi.org/10.1063/1.2743025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Golub, Igor E., Oleg A. Filippov, Vasilisa A. Kulikova, Natalia V. Belkova, Lina M. Epstein, and Elena S. Shubina. "Thermodynamic Hydricity of Small Borane Clusters and Polyhedral closo-Boranes." Molecules 25, no. 12 (2020): 2920. http://dx.doi.org/10.3390/molecules25122920.

Pełny tekst źródła
Streszczenie:
Thermodynamic hydricity (HDAMeCN) determined as Gibbs free energy (ΔG°[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up to 5 boron atoms), polyhedral closo-boranes dianions [BnHn]2−, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD model). Thermodynamic hydricity values of diborane B2H6 (HDAMeCN = 82.1 kcal/mol) and its dianion [B2H6]2− (HDAMeCN = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity. Bor
Style APA, Harvard, Vancouver, ISO itp.
50

Alherz, Abdulaziz, Chern-Hooi Lim, James T. Hynes, and Charles B. Musgrave. "Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy." Journal of Physical Chemistry B 122, no. 3 (2018): 1278–88. http://dx.doi.org/10.1021/acs.jpcb.7b12093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!