Artykuły w czasopismach na temat „Hydrogel method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydrogel method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fu, Qiang, Junxiao Tang, Weimin Wang, and Rongjie Wang. "Biocomposite Polyvinyl Alcohol/Ferritin Hydrogels with Enhanced Stretchability and Conductivity for Flexible Strain Sensors." Gels 11, no. 1 (2025): 59. https://doi.org/10.3390/gels11010059.
Pełny tekst źródłaWang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao, and Juan Yan. "Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels." Biosensors 13, no. 7 (2023): 755. http://dx.doi.org/10.3390/bios13070755.
Pełny tekst źródłaSihombing, Y. A., N. Nafisah, I. Anshori, D. A. Hapidin, D. Edikresnha, and K. Khairurrijal. "Preparation and Characterization of PVA/Chitosan-Based Hydrogels Enriched with Carbon Materials via the Freeze-Thaw Method." Journal of Physics: Conference Series 2733, no. 1 (2024): 012011. http://dx.doi.org/10.1088/1742-6596/2733/1/012011.
Pełny tekst źródłaGayatri, J. khanderao, A. Kubde Jitendra, R. Hatwar Pooja, L. Bakal Ravindra, and G. Karule Vaishnavi. "A review article on PH- sensitive Hydrogel." GSC Biological and Pharmaceutical Sciences 29, no. 3 (2024): 069–81. https://doi.org/10.5281/zenodo.14829686.
Pełny tekst źródłaChen, Liting, Zheqiong Fan, Weiguo Mao, Cuiying Dai, Daming Chen, and Xinghong Zhang. "Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method." Nanomaterials 12, no. 22 (2022): 4090. http://dx.doi.org/10.3390/nano12224090.
Pełny tekst źródłaTang, Yuanhan, Junjie Ding, Xun Zhou, et al. "Injectable hydrogels of enzyme-catalyzed cross-linked tyramine-modified gelatin for drug delivery." Australian Journal of Chemistry 76, no. 2 (2023): 88–99. http://dx.doi.org/10.1071/ch22188.
Pełny tekst źródłaFeng, Junyan, Peng Cao, Tao Yang, Hezheng Ao, and Bo Xing. "Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method." Sensors 24, no. 10 (2024): 3038. http://dx.doi.org/10.3390/s24103038.
Pełny tekst źródłaZhu, Wantong. "One-step soaking strategy toward mechanical double-network hydrogel." Highlights in Science, Engineering and Technology 116 (November 7, 2024): 21–26. http://dx.doi.org/10.54097/4hreyy45.
Pełny tekst źródłaJiang, Hai Ling. "Network Structure and Water Absorption of Soil Moisture Gel by Coarse-Grained Molecular Dynamics Simulations." International Journal of Engineering Research in Africa 63 (March 30, 2023): 1–12. http://dx.doi.org/10.4028/p-r8o1xc.
Pełny tekst źródłaSirousazar, M., M. Kokabi, A. R. Bahramian, and Z. M. Hassan. "PVA/Kaolinite Nanocomposite Hydrogels: Preparation Method and Characterization." Advanced Materials Research 383-390 (November 2011): 3854–57. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.3854.
Pełny tekst źródłaJi, Feng, Pengbo Shang, Yingkai Lai, et al. "Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors." Materials 16, no. 19 (2023): 6491. http://dx.doi.org/10.3390/ma16196491.
Pełny tekst źródłaZhao, Chenyu, Han Wang, Xue Sun, et al. "Non-Covalent Cross-Linking Hydrogel: A New Method for Visceral Hemostasis." Gels 10, no. 5 (2024): 326. http://dx.doi.org/10.3390/gels10050326.
Pełny tekst źródłaBibire, Tudor, Radu Dănilă, Cătălina Natalia Yilmaz, et al. "In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care." Pharmaceuticals 17, no. 7 (2024): 943. http://dx.doi.org/10.3390/ph17070943.
Pełny tekst źródłaZitouni, Mohammed Amine, and Sofia Borsali Kara Slimane. "Preparation and Characterization of Hydrogels Based on Chitsoan/Polyvinyl Alcohol Blends." Advanced Materials Research 1105 (May 2015): 203–7. http://dx.doi.org/10.4028/www.scientific.net/amr.1105.203.
Pełny tekst źródłaJamshidi, Maryam, and Cavus Falamaki. "Image analysis method for heterogeneity and porosity characterization of biomimetic hydrogels." F1000Research 9 (April 12, 2021): 1461. http://dx.doi.org/10.12688/f1000research.27372.2.
Pełny tekst źródłaYue, Shuai, Hui He, Bin Li, and Tao Hou. "Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review." Nanomaterials 10, no. 8 (2020): 1511. http://dx.doi.org/10.3390/nano10081511.
Pełny tekst źródłaGan, Jing, Lirong Sun, Chenxia Guan, et al. "Preparation and Properties of Salecan–Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase." International Journal of Molecular Sciences 23, no. 16 (2022): 9383. http://dx.doi.org/10.3390/ijms23169383.
Pełny tekst źródłaPeng, Yi-Yang, Qiuli Cheng, Meng Wu, et al. "Highly Stretchable, Self-Healing, Injectable and pH Responsive Hydrogel from Multiple Hydrogen Bonding and Boron-Carbohydrate Interactions." Gels 9, no. 9 (2023): 709. http://dx.doi.org/10.3390/gels9090709.
Pełny tekst źródłaLi, Chi-Ping, Mao-Chi Weng, and Shu-Ling Huang. "Preparation and Characterization of pH Sensitive Chitosan/3-Glycidyloxypropyl Trimethoxysilane (GPTMS) Hydrogels by Sol-Gel Method." Polymers 12, no. 6 (2020): 1326. http://dx.doi.org/10.3390/polym12061326.
Pełny tekst źródłaLi, Wei, Yang Ming, Libing Yang, et al. "Conductive Hydrogel Motion Sensor with Low-Temperature Stability for Winter Sports and Sensing Rescue." Polymers 17, no. 10 (2025): 1365. https://doi.org/10.3390/polym17101365.
Pełny tekst źródłaWang, Yangyang, and Yansong Wang. "A Composited Povidone-Iodine Silk Fibroin Hydrogel for Wound Infection." Journal of Biomaterials and Tissue Engineering 9, no. 6 (2019): 719–30. http://dx.doi.org/10.1166/jbt.2019.2055.
Pełny tekst źródłaJamshidi, Maryam, and Cavus Falamaki. "Image analysis method for heterogeneity and porosity characterization of biomimetic hydrogels." F1000Research 9 (December 15, 2020): 1461. http://dx.doi.org/10.12688/f1000research.27372.1.
Pełny tekst źródłaHidaka, Mitsuyuki, Masaru Kojima, Shinji Sakai, and Cédric Delattre. "Characterization of Chitosan Hydrogels Obtained through Phenol and Tripolyphosphate Anionic Crosslinking." Polymers 16, no. 9 (2024): 1274. http://dx.doi.org/10.3390/polym16091274.
Pełny tekst źródłaZheng, Shoujing, and Zishun Liu. "The Machine Learning Embedded Method of Parameters Determination in the Constitutive Models and Potential Applications for Hydrogels." International Journal of Applied Mechanics 13, no. 01 (2021): 2150001. http://dx.doi.org/10.1142/s1758825121500010.
Pełny tekst źródłaPeng, Rui, Huilong Yu, Chungui Du, et al. "Preparation of uniformly dispersed N-isopropylacryl-amide/acrylic acid/nanosilver composite hydrogel and its anti-mold properties." BioResources 16, no. 1 (2020): 441–54. http://dx.doi.org/10.15376/biores.16.1.441-454.
Pełny tekst źródłaZhao, Zunhui, Jiahao Liu, Jun Lv, Bo Liu, Na Li, and Hangyu Zhang. "Facile One-Pot Preparation of Polypyrrole-Incorporated Conductive Hydrogels for Human Motion Sensing." Sensors 24, no. 17 (2024): 5814. http://dx.doi.org/10.3390/s24175814.
Pełny tekst źródłaRahmi Luthfianti, Halida, William Xaveriano Waresindo, Marathur Rodhiyah, et al. "Investigating the Physical Characteristics of Starch/Gelatin Hydrogels using Freezing-Thawing Method." Journal of Physics: Conference Series 2973, no. 1 (2025): 012015. https://doi.org/10.1088/1742-6596/2973/1/012015.
Pełny tekst źródłaVera Nanda, E., Y. Yusmaniar, R. Juniar, and Y. Pratiwi. "Utilizing Nata de Pina for Hydrogel Synthesis: Effects of Citric Acid on Hydrogel Characteristics." Journal of Physics: Conference Series 2866, no. 1 (2024): 012058. http://dx.doi.org/10.1088/1742-6596/2866/1/012058.
Pełny tekst źródłaWen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia, and Lei Zhu. "A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking." Polymers 12, no. 1 (2020): 239. http://dx.doi.org/10.3390/polym12010239.
Pełny tekst źródłaWei, Qinghua, Yingfeng Zhang, Yanen Wang, et al. "Study of the effects of water content and temperature on polyacrylamide/polyvinyl alcohol interpenetrating network hydrogel performance by a molecular dynamics method." e-Polymers 15, no. 5 (2015): 301–9. http://dx.doi.org/10.1515/epoly-2015-0087.
Pełny tekst źródłaFolh, Jordyn, Phan Linh Dan Tran, and Renita E. Horton. "Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies." Bioengineering 12, no. 7 (2025): 759. https://doi.org/10.3390/bioengineering12070759.
Pełny tekst źródłaMd Raffe, Siti Noor Atiyah, Roziana Mohamed Hanaphi, and Rizana Yusof. "Enhanced Biodegradability of Pectin-Chitosan Eutectogels Synthesized with Deep Eutectic Solvents." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 127, no. 2 (2025): 62–76. https://doi.org/10.37934/arfmts.127.2.6276.
Pełny tekst źródłaLi, Yongzhi, Jiangshan Liu, Jiawei Wei, et al. "Porous Hydrogels Prepared by Two-Step Gelation Method for Bone Regeneration." Journal of Functional Biomaterials 16, no. 3 (2025): 100. https://doi.org/10.3390/jfb16030100.
Pełny tekst źródłaAbd El-Hady, M. M., and S. El-Sayed Saeed. "Antibacterial Properties and pH Sensitive Swelling of Insitu Formed Silver-Curcumin Nanocomposite Based Chitosan Hydrogel." Polymers 12, no. 11 (2020): 2451. http://dx.doi.org/10.3390/polym12112451.
Pełny tekst źródłaYuan, Wenfeng, Jia Yang, Mengmeng Yuan, et al. "Facile Preparation of MXene/Poly(vinyl alcohol)/N-(2-Hydroxyethyl Acrylamide) Hydrogels with High Tensile Strength for Strain Sensors." Journal of Nanoelectronics and Optoelectronics 16, no. 11 (2021): 1834–43. http://dx.doi.org/10.1166/jno.2021.3137.
Pełny tekst źródłaNandini, Sahu, Gupta Diksha, and Nautiyal Ujjwal. "Hydrogel: Preparation, Characterization and Applications." Asian Pacific Journal of Nursing and Health Sciences 3, no. 1 (2020): 1–11. https://doi.org/10.5281/zenodo.3832016.
Pełny tekst źródłaJiang, Weihui, Peiyao Shen, and Ju Gu. "Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels." Journal of Polymer Engineering 40, no. 1 (2019): 67–74. http://dx.doi.org/10.1515/polyeng-2019-0258.
Pełny tekst źródłaChai, Weihong, Rongbin Yang, Jiayi Zhou, and Qinghua Wei. "Performance Comparison of PVA/SA Composite Hydrogels for 3D Printing of Cartilage Scaffolds with Different Compositions." Journal of Physics: Conference Series 2437, no. 1 (2023): 012042. http://dx.doi.org/10.1088/1742-6596/2437/1/012042.
Pełny tekst źródłaXiang, Changxin, Xinyan Zhang, Jianan Zhang, et al. "A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering." Journal of Functional Biomaterials 13, no. 3 (2022): 140. http://dx.doi.org/10.3390/jfb13030140.
Pełny tekst źródłaOtake, Hiroko, Fumihiko Ogata, Yosuke Nakazawa, et al. "Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin." Gels 11, no. 4 (2025): 251. https://doi.org/10.3390/gels11040251.
Pełny tekst źródłaZhang, Shu Di, Yu Chun Zhai, and Zhen Fang Zhang. "Preparation and Properties of Polyvinyl Alcohol (PVA)/Polyvinyl Pyrrolidone (PVP) Hydrogel." Applied Mechanics and Materials 84-85 (August 2011): 485–88. http://dx.doi.org/10.4028/www.scientific.net/amm.84-85.485.
Pełny tekst źródłaWang, Jilong, Junhua Wei, and Jingjing Qiu. "Facile Synthesis of Tough Double Network Hydrogel." MRS Advances 1, no. 27 (2016): 1953–58. http://dx.doi.org/10.1557/adv.2016.127.
Pełny tekst źródłaPelin, Irina Mihaela, Mihaela Silion, Irina Popescu, Cristina Mihaela Rîmbu, Gheorghe Fundueanu, and Marieta Constantin. "Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications." Pharmaceutics 15, no. 6 (2023): 1674. http://dx.doi.org/10.3390/pharmaceutics15061674.
Pełny tekst źródłaKhalifah, Tur Ridha Noer, Hasnah Natsir, Siti Fauziah, and Indah Raya. "Synthesis and Characterization of Hydrogels Derived from Cellulose of Water Hyacinth (<i>Eichornia crassipes</i>) and Chitosan Using the Freeze-Thaw Method." Materials Science Forum 1061 (May 26, 2022): 91–96. http://dx.doi.org/10.4028/p-w4p187.
Pełny tekst źródłaPriya, Arumugasamy Sathiya, Rajaraman Premanand, Indhumathi Ragupathi, et al. "Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications." Journal of Composites Science 8, no. 11 (2024): 457. http://dx.doi.org/10.3390/jcs8110457.
Pełny tekst źródłaGherman, Timea, Violeta Popescu, Rahela Carpa, et al. "Potential Use of Galium verum Essential Oil for Antibacterial Properties in Gelatin Based Hydrogels Prepared by Microwave Irradiation Technique." Revista de Chimie 69, no. 3 (2018): 575–80. http://dx.doi.org/10.37358/rc.18.3.6152.
Pełny tekst źródłaDrozdova, Maria, Marina Vodyakova, Tatiana Tolstova, et al. "Composite Hydrogels Based on Cross-Linked Chitosan and Low Molecular Weight Hyaluronic Acid for Tissue Engineering." Polymers 15, no. 10 (2023): 2371. http://dx.doi.org/10.3390/polym15102371.
Pełny tekst źródłaMounayer, Natalie, Sivan Shoshani, Elena Afrimzon, et al. "Encapsulation of Hydrogen Peroxide in PVA/PVP Hydrogels for Medical Applications." Gels 11, no. 1 (2025): 31. https://doi.org/10.3390/gels11010031.
Pełny tekst źródłaLiu, Yin, Hongwu Zhang, Jianhua Wang, and Yonggang Zheng. "Anisotropic Swelling in Fiber-Reinforced Hydrogels: An Incremental Finite Element Method and Its Applications in Design of Bilayer Structures." International Journal of Applied Mechanics 08, no. 07 (2016): 1640003. http://dx.doi.org/10.1142/s1758825116400032.
Pełny tekst źródłaGuancha-Chalapud, Marcelo A., Liliana Serna-Cock, and Diego F. Tirado. "Aloe vera Rind Valorization to Improve the Swelling Capacity of Commercial Acrylic Hydrogels." Fibers 10, no. 9 (2022): 73. http://dx.doi.org/10.3390/fib10090073.
Pełny tekst źródła