Gotowa bibliografia na temat „Hypomimia”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hypomimia”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hypomimia"
Khomchenkova, A. A., i S. V. Prokopenko. "Hypomimia and Methods of Its Diagnostics in Patients with Parkinson’s Disease". Doctor.Ru 20, nr 5 (2021): 39–42. http://dx.doi.org/10.31550/1727-2378-2021-20-5-39-42.
Pełny tekst źródłaSu, Ge, Bo Lin, Wei Luo, Jianwei Yin, Shuiguang Deng, Honghao Gao i Renjun Xu. "Hypomimia Recognition in Parkinson’s Disease With Semantic Features". ACM Transactions on Multimedia Computing, Communications, and Applications 17, nr 3s (31.10.2021): 1–20. http://dx.doi.org/10.1145/3476778.
Pełny tekst źródłaKhomchenkova, Aleksandra A., Semyon V. Prokopenko i Saikal B. Ismailova. "Clinical aspects of hypomimia in Parkinson’s disease". Neurology Bulletin LIV, nr 1 (11.04.2022): 45–53. http://dx.doi.org/10.17816/nb89531.
Pełny tekst źródłaProkopenko, S. V., A. A. Khomchenkova, V. A. Gurevich, N. A. Butenko, V. A. Kontorin i A. V. Spirin. "An Objective Method for Assessment of Facial Expression in Patients with Parkinson’s Disease and Healthy Population". Medical University 3, nr 4 (1.12.2020): 151–54. http://dx.doi.org/10.2478/medu-2020-0018.
Pełny tekst źródłaBianchini, Edoardo, Domiziana Rinaldi, Marika Alborghetti, Marta Simonelli, Flavia D’Audino, Camilla Onelli, Elena Pegolo i Francesco E. Pontieri. "The Story behind the Mask: A Narrative Review on Hypomimia in Parkinson’s Disease". Brain Sciences 14, nr 1 (22.01.2024): 109. http://dx.doi.org/10.3390/brainsci14010109.
Pełny tekst źródłaKhomchenkova, A. A., S. V. Prokopenko, V. A. Gurevich i P. V. Peresunko. "Diagnosis of hypomimia in Parkinson’s disease". Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 122, nr 11 (2022): 24. http://dx.doi.org/10.17116/jnevro202212211224.
Pełny tekst źródłaKhomchenkova, A. A., S. V. Prokopenko, S. B. Ismailova, Yu N. Ashikhmina i E. S. Denisova. "Correction of Hypomimia Through Activation of Gait Function in Patients with Parkinson`s Disease". Doctor.Ru 22, nr 6 (2023): 78–82. http://dx.doi.org/10.31550/1727-2378-2023-22-6-78-82.
Pełny tekst źródłaPegolo, Elena, Daniele Volpe, Alberto Cucca, Lucia Ricciardi i Zimi Sawacha. "Quantitative Evaluation of Hypomimia in Parkinson’s Disease: A Face Tracking Approach". Sensors 22, nr 4 (10.02.2022): 1358. http://dx.doi.org/10.3390/s22041358.
Pełny tekst źródłaRicciardi, L., A. De Angelis, L. Marsili, I. Faiman, P. Pradhan, E. A. Pereira, M. J. Edwards, F. Morgante i M. Bologna. "Hypomimia in Parkinson’s disease: an axial sign responsive to levodopa". European Journal of Neurology 27, nr 12 (20.08.2020): 2422–29. http://dx.doi.org/10.1111/ene.14452.
Pełny tekst źródłaDumer, Aleksey I., Harriet Oster, David McCabe, Laura A. Rabin, Jennifer L. Spielman, Lorraine O. Ramig i Joan C. Borod. "Effects of the Lee Silverman Voice Treatment (LSVT® LOUD) on Hypomimia in Parkinson's Disease". Journal of the International Neuropsychological Society 20, nr 3 (13.02.2014): 302–12. http://dx.doi.org/10.1017/s1355617714000046.
Pełny tekst źródłaRozprawy doktorskie na temat "Hypomimia"
Filali, razzouki Anas. "Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease". Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Pełny tekst źródłaThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Części książek na temat "Hypomimia"
Vinokurov, Nomi, David Arkadir, Eduard Linetsky, Hagai Bergman i Daphna Weinshall. "Quantifying Hypomimia in Parkinson Patients Using a Depth Camera". W Communications in Computer and Information Science, 63–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32270-4_7.
Pełny tekst źródłaMehta, Gautam, i Bilal Iqbal. "Central Nervous System". W Clinical Medicine for the MRCP PACES. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780199542550.003.0011.
Pełny tekst źródłaStreszczenia konferencji na temat "Hypomimia"
Grammatikopoulou, Athina, Nikos Grammalidis, Sevasti Bostantjopoulou i Zoe Katsarou. "Detecting hypomimia symptoms by selfie photo analysis". W PETRA '19: The 12th PErvasive Technologies Related to Assistive Environments Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3316782.3322756.
Pełny tekst źródłaXu, Zhouxiang, Dongxu Lv, Haoyu Li, Hong Li i Hebei Gao. "Application of ResLSTM in Hypomimia Video Detection for Parkinson's Disease". W 2023 International Conference on New Trends in Computational Intelligence (NTCI). IEEE, 2023. http://dx.doi.org/10.1109/ntci60157.2023.10403741.
Pełny tekst źródłaRajnoha, Martin, Jiri Mekyska, Radim Burget, Ilona Eliasova, Milena Kostalova i Irena Rektorova. "Towards Identification of Hypomimia in Parkinson's Disease Based on Face Recognition Methods". W 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2018. http://dx.doi.org/10.1109/icumt.2018.8631249.
Pełny tekst źródłaAthayde, Natália Merten, Wladimir Bocca Vieira de Rezende Pinto, Paulo Victor Sgobbi de Souza, Acary Souza Bulle Oliveira i Alzira Alves de Siqueira Carvalho. "Expansion of the phenotype in ALS19". W XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.455.
Pełny tekst źródłaValenzuela, Brayan, Jhon Arevalo, William Contreras i Fabio Martinez. "A Spatio-Temporal Hypomimic Deep Descriptor to Discriminate Parkinsonian Patients". W 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871753.
Pełny tekst źródła