Gotowa bibliografia na temat „Hyponormal operator”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hyponormal operator”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Hyponormal operator"

1

Chō, Muneo. "Spectral properties of p-hyponormal operators." Glasgow Mathematical Journal 36, no. 1 (1994): 117–22. http://dx.doi.org/10.1017/s0017089500030627.

Pełny tekst źródła
Streszczenie:
Let ℋ be a complex Hilbert space and B(ℋ) be the algebra of all bounded linear opeators on ℋ. An operator T ∈ B(ℋ) is said to be p-hyponormal if (T*T)p–(TT*)p. If p = 1, T is hyponormal and if p = ½ is semi-hyponormal. It is well known that a p-hyponormal operator is p-hyponormal for q≤p. Hyponormal operators have been studied by many authors. The semi-hyponormal operator was first introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A. Aluthge in [1]. Let T be a p-hyponormal operator and T=U|T| be a polar decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.
Style APA, Harvard, Vancouver, ISO itp.
2

Chō, Muneo, Dijana Mosic, Biljana Nacevska-Nastovska, and Taiga Saito. "Spectral properties of square hyponormal operators." Filomat 33, no. 15 (2019): 4845–54. http://dx.doi.org/10.2298/fil1915845c.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a complex Hilbert space H such that T2 is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis ?(T) ? (-?(T)) ? {0}, we study spectral properties of a square hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and x,y ? H are corresponding eigen-vectors, respectively, then ?x,y? = 0. Also, we define nth hyponormal operators and present some properties of this kind of operators.
Style APA, Harvard, Vancouver, ISO itp.
3

Gunawan, Gunawan, and Erni Widiyastuti. "KARAKTERISTIK OPERATOR PARANORMAL- * QUASI." Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika 3, no. 1 (2022): 256–73. http://dx.doi.org/10.46306/lb.v3i1.114.

Pełny tekst źródła
Streszczenie:
Given Hilbert space H over the fields of . This study aimed to investigate the paranormal- * quasi operators and their properties in Hilbert space. The study resulted the properties of paranormal- * quasi operators, hyponormal operator, class A operator, Class A- * operator, p- hyponormal operator for p > 0, - paranormal operators, compact operator, and the relationship between them
Style APA, Harvard, Vancouver, ISO itp.
4

Journal, Baghdad Science. "Quasi-posinormal operators." Baghdad Science Journal 7, no. 3 (2010): 1282–87. http://dx.doi.org/10.21123/bsj.7.3.1282-1287.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
Style APA, Harvard, Vancouver, ISO itp.
5

Duggal, B. P. "On the spectrum of n-tuples of p-hyponormal operators." Glasgow Mathematical Journal 40, no. 1 (1998): 123–31. http://dx.doi.org/10.1017/s0017089500032419.

Pełny tekst źródła
Streszczenie:
Let B(H) denote the algebra of operators (i.e., bounded linear transformations) on the Hilbert space H. A ∈ B (H) is said to be p-hyponormal (0<p<l), if (AA*)γ < (A*A)p. (Of course, a l-hyponormal operator is hyponormal.) The p-hyponormal property is monotonic decreasing in p and a p-hyponormal operator is q-hyponormal operator for all 0<q <p. Let A have the polar decomposition A = U |A|, where U is a partial isometry and |A| denotes the (unique) positive square root of A*A.If A has equal defect and nullity, then the partial isometry U may be taken to be unitary. Let ℋU(p) denote the class of p -hyponormal operators for which U in A = U |A| is unitary. ℋU(l/2) operators were introduced by Xia and ℋU(p) operators for a general 0<p<1 were first considered by Aluthge (see [1,14]); ℋU(p) operators have since been considered by a number of authors (see [3, 4, 5, 9, 10] and the references cited in these papers). Generally speaking, ℋU(p) operators have spectral properties similar to those of hyponormal operators. Indeed, let A ε ℋU(p), (0<p <l/2), have the polar decomposition A = U|A|, and define the ℋW(p + 1/2) operator  by A = |A|1/2U |A|l/2 Let  = V |Â| Â= |Â|1/2VÂ|ÂAcirc;|1/2. Then we have the following result.
Style APA, Harvard, Vancouver, ISO itp.
6

Han, Young, and Hee Son. "On quasi-M-hyponormal operators." Filomat 25, no. 1 (2011): 37–52. http://dx.doi.org/10.2298/fil1101037h.

Pełny tekst źródła
Streszczenie:
An operator T is called quasi-M -hyponormal if there exists a positive real number M such that T ? (M 2 (T ??)? (T ??))T ? T ? (T ??)(T ??)? T for all ? ? C, which is a generalization of M -hyponormality. In this paper, we consider the local spectral properties for quasi-M -hyponormal operators and Weyl type theorems for algebraically quasi-M-hyponormal operators, respectively. It is also proved that if T is an algebraically quasi-M -hyponormal operator, then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.
Style APA, Harvard, Vancouver, ISO itp.
7

Mecheri, Salah. "Positive answer to the invariant and hyperinvariant subspaces problems for hyponormal operators." Georgian Mathematical Journal 29, no. 2 (2021): 233–44. http://dx.doi.org/10.1515/gmj-2021-2124.

Pełny tekst źródła
Streszczenie:
Abstract The question whether every operator on infinite-dimensional Hilbert space 𝐻 has a nontrivial invariant subspace or a nontrivial hyperinvariant subspace is one of the most difficult problems in operator theory. This problem is open for more than half a century. A subnormal operator has a nontrivial invariant subspace, but the existence of nontrivial invariant subspace for a hyponormal operator 𝑇 still open. In this paper we give an affirmative answer of the existence of a nontrivial hyperinvariant subspace for a hyponormal operator. More generally, we show that a large classes of operators containing the class of hyponormal operators have nontrivial hyperinvariant subspaces. Finally, every generalized scalar operator on a Banach space 𝑋 has a nontrivial invariant subspace.
Style APA, Harvard, Vancouver, ISO itp.
8

Mecheri, S., and T. Prasad. "Fuglede – Putnam type theorems for extension of -hyponormal operators." Ukrains’kyi Matematychnyi Zhurnal 74, no. 1 (2022): 89–98. http://dx.doi.org/10.37863/umzh.v74i1.2355.

Pełny tekst źródła
Streszczenie:
UDC 517.9 We consider -quasi--hyponormal operator suchthat for some and prove the Fuglede–Putnam type theorem when adjoint of is -quasi--hyponormal or dominant operators.We also show that two quasisimilar -quasi--hyponormal operators have equal essential spectra.
Style APA, Harvard, Vancouver, ISO itp.
9

Duggal, B. P. "A remark on the essential spectra of quasi-similar dominant contractions." Glasgow Mathematical Journal 31, no. 2 (1989): 165–68. http://dx.doi.org/10.1017/s0017089500007680.

Pełny tekst źródła
Streszczenie:
We consider operators, i.e. bounded linear transformations, on an infinite dimensional separable complex Hilbert space H into itself. The operator A is said to be dominant if for each complex number λ there exists a number Mλ(≥l) such that ∥(A – λ)*x∥ ≤ Mλ∥A – λ)x∥ for each x∈H. If there exists a number M≥Mλ for all λ, then the dominant operator A is said to be M-hyponormal. The class of dominant (and JW-hyponormal) operators was introduced by J. G. Stampfli during the seventies, and has since been considered in a number of papers, amongst then [7], [11]. It is clear that a 1-hyponormal is hyponormal. The operator A*A is said to be quasi-normal if Acommutes with A*A, and we say that A is subnormal if A has a normal extension. It is known that the classes consisting of these operators satisfy the following strict inclusion relation:
Style APA, Harvard, Vancouver, ISO itp.
10

Lauric, Vasile. "Some remarks on the invariant subspace problem for hyponormal operators." International Journal of Mathematics and Mathematical Sciences 28, no. 6 (2001): 359–65. http://dx.doi.org/10.1155/s0161171201011966.

Pełny tekst źródła
Streszczenie:
We make some remarks concerning the invariant subspace problem for hyponormal operators. In particular, we bring together various hypotheses that must hold for a hyponormal operator without nontrivial invariant subspaces, and we discuss the existence of such operators.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!