Gotowa bibliografia na temat „II-VI Substrates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „II-VI Substrates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "II-VI Substrates"
Sato, K., Y. Seki, Y. Matsuda i O. Oda. "Recent developments in II–VI substrates". Journal of Crystal Growth 197, nr 3 (luty 1999): 413–22. http://dx.doi.org/10.1016/s0022-0248(98)00739-8.
Pełny tekst źródłaErnst, K., I. Sieber, M. Neumann-Spallart, M. Ch Lux-Steiner i R. Könenkamp. "Characterization of II–VI compounds on porous substrates". Thin Solid Films 361-362 (luty 2000): 213–17. http://dx.doi.org/10.1016/s0040-6090(99)00836-6.
Pełny tekst źródłaJones, K. M., F. S. Hasoon, A. B. Swartzlander, M. M. Al-Jassim, T. L. Chu i S. S. Chu. "The morphology and microstructure of polycrystalline CdTe thin films for solar cell applications". Proceedings, annual meeting, Electron Microscopy Society of America 50, nr 2 (sierpień 1992): 1384–85. http://dx.doi.org/10.1017/s0424820100131553.
Pełny tekst źródłaZAHN, DIETRICH R. T. "PROBING SURFACES AND INTERFACES WITH OPTICAL TECHNIQUES". Surface Review and Letters 01, nr 04 (grudzień 1994): 421–28. http://dx.doi.org/10.1142/s0218625x94000382.
Pełny tekst źródłaBelyaev, A. P., i V. P. Rubets. "Heteroepitaxy of II-VI compound semiconductors on cooled substrates". Semiconductors 35, nr 3 (marzec 2001): 279–82. http://dx.doi.org/10.1134/1.1356146.
Pełny tekst źródłaBoney, C. "II–VI blue/green laser diodes on ZnSe substrates". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, nr 3 (maj 1996): 2259. http://dx.doi.org/10.1116/1.588914.
Pełny tekst źródłaCywiński, G., T. Wojtowicz, K. Kopalko, G. Karczewski i J. Kossut. "Epitaxial Growths of II-VI Compounds on (110) Substrates". Acta Physica Polonica A 94, nr 2 (sierpień 1998): 281–84. http://dx.doi.org/10.12693/aphyspola.94.281.
Pełny tekst źródłaThompson, J., K. T. Woodhouse i C. Dineen. "Epitaxial growth of II–VI compounds on sapphire substrates". Journal of Crystal Growth 77, nr 1-3 (wrzesień 1986): 452–59. http://dx.doi.org/10.1016/0022-0248(86)90336-2.
Pełny tekst źródłaSchikora, D., H. Hausleitner, S. Einfeldt, C. R. Becker, Th Widmer, C. Giftge, K. Lübke, K. Lischka, M. von Ortenberg i G. Landwehr. "Epitaxial overgrowth of II–VI compounds on patterned substrates". Journal of Crystal Growth 138, nr 1-4 (kwiecień 1994): 8–13. http://dx.doi.org/10.1016/0022-0248(94)90772-2.
Pełny tekst źródłaBrill, Gregory N., Yuanping Chen, Priyalal S. Wijewarnasuriya i Nibir K. Dhar. "Hg based II-VI compounds on non-standard substrates". physica status solidi (a) 209, nr 8 (20.06.2012): 1423–27. http://dx.doi.org/10.1002/pssa.201100734.
Pełny tekst źródłaRozprawy doktorskie na temat "II-VI Substrates"
Shkurmanov, Alexander, Chris Sturm, Jörg Lenzner, Guy Feuillet, Florian Tendille, Mierry Philippe De i Marius Grundmann. "Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-210898.
Pełny tekst źródłaO'Donnell, Cormac Brendan. "MBE growth and characterisation of ZnSe-based II-VI semiconductors". Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.
Pełny tekst źródłaKumar, Vishwanath. "Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation". [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000218.
Pełny tekst źródłaMelhem, Hassan. "Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.
Pełny tekst źródłaSilicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Gros, Patricia. "Epitaxie métal sur semi-conducteur II-VI : cas des terres rares sur CdTe". Grenoble 1, 1993. http://www.theses.fr/1993GRE10079.
Pełny tekst źródłaChen, Jie. "Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells". University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1286813480.
Pełny tekst źródła"Monocrystalline ZnTe/CdTe/MgCdTe Double Heterostructure Solar Cells Grown on InSb Substrates by Molecular Beam Epitaxy". Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.26867.
Pełny tekst źródłaDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2014
Yuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods". Thesis, 2009. https://etd.iisc.ac.in/handle/2005/1037.
Pełny tekst źródłaYuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods". Thesis, 2009. http://hdl.handle.net/2005/1037.
Pełny tekst źródłaYa-wen, Tzeng, i 曾雅文. "Interface study of II-VI compound semiconductor thin film grown on GaAs substrate". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/25036883588018655769.
Pełny tekst źródła中原大學
物理學系
88
ZnSe buffer layers were grown at low temperature (100 to 250 oC) on the GaAs substrates by molecular beam epitaxy. Resistivity was found to decrease with the growth temperature. While, etch pit density (EPD) of ZnSe epilayer grown at 300 oC on the low temperature ZnSe buffer layers was found independent on the growth temperature of the buffer layer. EPD of the ZnMgSe epilayers, which were grown on the tilted GaAs substrates, was found to decrease with the substrate tilted angle. The result is corroborated with the photoluminescence (PL) measurement, which shows an increasing PL intensity with the tilted substrate angle.
Części książek na temat "II-VI Substrates"
Colibaba, G. V., E. V. Monaico, E. P. Goncearenco, I. Inculet i I. M. Tiginyanu. "Features of Nanotemplates Manufacturing on the II-VI Compound Substrates". W 3rd International Conference on Nanotechnologies and Biomedical Engineering, 188–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_47.
Pełny tekst źródłaPark, Robert M. "ZnSe Growth on Non-Polar Substrates by Molecular Beam Epitaxy". W Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 245–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_24.
Pełny tekst źródłaHobart, Karl D., Fritz J. Kub, Henry F. Gray, Mark E. Twigg, Dowwon Park i Phillip E. Thompson. "Growth of low-dimensional structures on nonplanar patterned substrates". W Selected Topics in Group IV and II–VI Semiconductors, 338–43. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50072-3.
Pełny tekst źródłaBremond, G., A. Souifi, O. De Barros, A. Benmansour, P. Warren i D. Dutartre. "Photoluminescence characterization of Si1−xGex relaxed “pseudo-substrates” grown on Si". W Selected Topics in Group IV and II–VI Semiconductors, 116–20. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50032-2.
Pełny tekst źródłaKolodzey, J., P. R. Berger, B. A. Orner, D. Hits, F. Chen, A. Khan, X. Shao i in. "Optical and electronic properties of SiGeC alloys grown on Si substrates". W Selected Topics in Group IV and II–VI Semiconductors, 386–91. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50081-4.
Pełny tekst źródłaSochinskii, N. V., J. C. Soares, E. Alves, M. F. da Silva, P. Franzosi, S. Bernardi i E. Diéguez. "Structural properties of CdTe and Hg1−xCdxTe epitaxial layers grown on sapphire substrates". W Selected Topics in Group IV and II–VI Semiconductors, 195–200. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50123-6.
Pełny tekst źródłaBenisty, Henri, Jean-Jacques Greffet i Philippe Lalanne. "More confined electrons: Quantum dots and quantum wires". W Introduction to Nanophotonics, 246–72. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0009.
Pełny tekst źródłaKayambaki, M., R. Callec, G. Constantinidis, Ch Papavassiliou, E. Löchtermann, H. Krasny, N. Papadakis, P. Panayotatos i A. Georgakilas. "Investigation of Si-substrate preparation for GaAs-on-Si MBE growth". W Selected Topics in Group IV and II–VI Semiconductors, 300–303. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50064-4.
Pełny tekst źródłaLi, Shaozhong, Qi Xiang, Dawen Wang i Kang L. Wang. "Modeling of facet growth on patterned Si substrate in gas source MBE". W Selected Topics in Group IV and II–VI Semiconductors, 185–89. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50044-9.
Pełny tekst źródłaGutheit, T., M. Heinau, H. J. Füsser, C. Wild, P. Koidl i G. Abstreiter. "Molecular beam epitaxial grown Si1−xCx layers on Si(001) as a substrate for MWCVD of diamond". W Selected Topics in Group IV and II–VI Semiconductors, 426–30. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50088-7.
Pełny tekst źródłaStreszczenia konferencji na temat "II-VI Substrates"
Zogg, Hans, A. N. Tiwari, Stefan Blunier, Clau Maissen i Jiri Masek. "Heteroepitaxy of II-VI and IV-VI semiconductors on Si substrates". W Physical Concepts of Materials for Novel Optoelectronic Device Applications, redaktor Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24409.
Pełny tekst źródłaUusimma, P., M. Pessa, P. Blood, I. Auffret i C. Cooper. "Blue-green II-VI quantum well lasers". W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug4.
Pełny tekst źródłaUeta, A., A. Avramescu, K. Uesugi, T. Numai, I. Suemune, H. Machida i H. Shimoyama. "Selective Area Growth of Widegap II-VI Semiconductors on Patterned Substrates". W 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.c-5-2.
Pełny tekst źródłaHaase, M. A., J. Qiu, J. M. DePuydt i H. Cheng. "Blue-green II–VI laser diodes". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuss1.
Pełny tekst źródłaDi Marzio, Don, David J. Larson, Jr., Louis G. Casagrande, Jun Wu, Michael Dudley, Stephen P. Tobin i Peter W. Norton. "Large-area x-ray topographic screening of II-VI substrates and epilayers". W SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, redaktorzy Herbert K. Pollehn i Raymond S. Balcerak. SPIE, 1994. http://dx.doi.org/10.1117/12.179671.
Pełny tekst źródłaBONEY, C., D. B. EASON, Z. YU, W. C. HUGHES, J. W. COOK, J. F. SCHETZINA, G. CANTWELL i W. C. HARSCH. "Blue/Green Light Emitters Based on II-VI Heterostructures on ZnSe Substrates". W 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-v-1.
Pełny tekst źródłaHaase, Michael A. "Blue-green II-VI Laser Diodes: Progress in Reliability". W Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.ofb.1.
Pełny tekst źródłaTamargo, Maria C., Ning Dai, Abdullah Cavus, Rhonda Dzakpasu, Wojciech Krystek, Fred H. Pollak, Alph F. Semendy i in. "Growth of wide bandgap II-VI alloys on InP substrates by molecular beam epitaxy". W Photonics for Industrial Applications, redaktorzy Robert L. Gunshor i Arto V. Nurmikko. SPIE, 1994. http://dx.doi.org/10.1117/12.197267.
Pełny tekst źródłaIchirou Nomura, Katsumi Kishino, Tomoya Ebisawa, Shun Kushida, Jun Uota, Kunihiko Tasai, Hitoshi Nakamura, Tsunenori Asatsuma i Hiroshi Nakajima. "Proposal of BeZnSeTe/MgZnCdSe II–VI compound semiconductors on InP substrates for green laser diodes". W 2008 IEEE 21st International Semiconductor Laser Conference (ISLC). IEEE, 2008. http://dx.doi.org/10.1109/islc.2008.4636070.
Pełny tekst źródłaJohnson, Anthony M. "Femtosecond Exciton Dynamics of II-VI Semiconductor Multiple Quantum Wells (Invited)". W Inaugural Forum for the Research Center for Optical Physics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/rcop.1993.tpls2.
Pełny tekst źródłaRaporty organizacyjne na temat "II-VI Substrates"
Wilson, Thomas E., Avraham A. Levy i Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, marzec 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Pełny tekst źródła