Gotowa bibliografia na temat „Image de microscopie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Image de microscopie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Image de microscopie"
Kinosita, K., H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka i T. Hayakawa. "Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium." Journal of Cell Biology 115, nr 1 (1.10.1991): 67–73. http://dx.doi.org/10.1083/jcb.115.1.67.
Pełny tekst źródłaBouchon, Patrick, i Yannick de Wilde. "Rayonnement thermique infrarouge de nano-antennes plasmoniques individuelles". Photoniques, nr 105 (listopad 2020): 32–36. http://dx.doi.org/10.1051/photon/202010532.
Pełny tekst źródłaBraat, J. "Calcul efficace de l'intensité image en microscopie confocale appliqué à la lecture d'un disque optique". Annales de Physique 24, nr 3 (1999): 31–42. http://dx.doi.org/10.1051/anphys:199903004.
Pełny tekst źródłaWan, Xinjun, i Xuechen Tao. "Design of a Cell Phone Lens-Based Miniature Microscope with Configurable Magnification Ratio". Applied Sciences 11, nr 8 (9.04.2021): 3392. http://dx.doi.org/10.3390/app11083392.
Pełny tekst źródłaJin, Lingbo, Yubo Tang, Yicheng Wu, Jackson B. Coole, Melody T. Tan, Xuan Zhao, Hawraa Badaoui i in. "Deep learning extended depth-of-field microscope for fast and slide-free histology". Proceedings of the National Academy of Sciences 117, nr 52 (14.12.2020): 33051–60. http://dx.doi.org/10.1073/pnas.2013571117.
Pełny tekst źródłaTetard, Martin, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron i Luc Beaufort. "Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow". Climate of the Past 16, nr 6 (2.12.2020): 2415–29. http://dx.doi.org/10.5194/cp-16-2415-2020.
Pełny tekst źródłaPerrot, J. L., A. Biron, E. Couty, L. Tognetti, C. Couzan, R. Rossi, P. Rubegni i E. Cinotti. "Premiers cas de corrélation parfaite à l’échelle cellulaire entre image de microscopie confocale in vivo et dermatoscopie". Annales de Dermatologie et de Vénéréologie 145, nr 12 (grudzień 2018): S186. http://dx.doi.org/10.1016/j.annder.2018.09.261.
Pełny tekst źródłaDavidson, Michael W. "Pioneers in Optics: Joseph Jackson Lister and Maksymilian Pluta". Microscopy Today 19, nr 3 (28.04.2011): 54–56. http://dx.doi.org/10.1017/s1551929511000277.
Pełny tekst źródłaChen, Xiaodong, Bin Zheng i Hong Liu. "Optical and Digital Microscopic Imaging Techniques and Applications in Pathology". Analytical Cellular Pathology 34, nr 1-2 (2011): 5–18. http://dx.doi.org/10.1155/2011/150563.
Pełny tekst źródłaJia Renqing, 贾仁庆, 殷高方 Yin Gaofang, 赵南京 Zhao Nanjing, 徐敏 Xu Min, 胡翔 Hu Xiang, 黄朋 Huang Peng, 梁天泓 Liang Tianhong i in. "浮游藻类细胞显微多聚焦图像融合方法". Acta Optica Sinica 43, nr 12 (2023): 1210001. http://dx.doi.org/10.3788/aos222153.
Pełny tekst źródłaRozprawy doktorskie na temat "Image de microscopie"
Toledo, Acosta Bertha Mayela. "Multimodal image registration in 2D and 3D correlative microscopy". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S054/document.
Pełny tekst źródłaThis thesis is concerned with the definition of an automated registration framework for 2D and 3D correlative microscopy images, in particular for correlative light and electron microscopy (CLEM) images. In recent years, CLEM has become an important and powerful tool in the bioimaging field. By using CLEM, complementary information can be collected from a biological sample. An overlay of the different microscopy images is commonly achieved using techniques involving manual assistance at several steps, which is demanding and time consuming for biologists. To facilitate and disseminate the CLEM process for biologists, the thesis work is focused on creating automatic registration methods that are reliable, easy to use and do not require parameter tuning or complex knowledge. CLEM registration has to deal with many issues due to the differences between electron microscopy and light microscopy images and their acquisition, both in terms of pixel resolution, image size, content, field of view and appearance. We have designed intensity-based methods to align CLEM images in 2D and 3D. They involved a common representation of the LM and EM images using the LoG transform, a pre-alignment step exploiting histogram-based similarities within an exhaustive search, and a fine mutual information-based registration. In addition, we have defined a robust motion model selection method, and a multiscale spot detection method which were exploited in the 2D CLEM registration. Our automated CLEM registration framework was successfully tested on several real 2D and 3D CLEM datasets and the results were validated by biologists, offering an excellent perspective in the usefulness of our methods
Denimal, Emmanuel. "Détection de formes compactes en imagerie : développement de méthodes cumulatives basées sur l'étude des gradients : Applications à l'agroalimentaire". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK006/document.
Pełny tekst źródłaThe counting cells (Malassez, Thoma ...) are designed to allow the enumeration of cells under a microscope and the determination of their concentration thanks to the calibrated volume of the grid appearing in the microscopic image. Manual counting has major disadvantages: subjectivity, non-repeatability ... There are commercial automatic counting solutions, the disadvantage of which is that a well-controlled environment is required which can’t be obtained in certain studies ( eg glycerol greatly affects the quality of the images ). The objective of the project is therefore twofold: an automated cell count and sufficiently robust to be feasible regardless of the acquisition conditions.In a first step, a method based on the Fourier transform has been developed to detect, characterize and erase the grid of the counting cell. The characteristics of the grid extracted by this method serve to determine an area of interest and its erasure makes it easier to detect the cells to count.To perform the count, the main problem is to obtain a cell detection method robust enough to adapt to the variable acquisition conditions. The methods based on gradient accumulations have been improved by the addition of structures allowing a finer detection of accumulation peaks. The proposed method allows accurate detection of cells and limits the appearance of false positives.The results obtained show that the combination of these two methods makes it possible to obtain a repeatable and representative count of a consensus of manual counts made by operators
Moisan, Frédéric. "Optimisation du contraste image en microscopie optique : application à l'inspection microélectronique". Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00331501.
Pełny tekst źródłaMoisan, Frédéric. "Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /". Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37616602c.
Pełny tekst źródłaMoisan, Frédéric Courtois Bernard. "Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /". S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00331501.
Pełny tekst źródłaJezierska, Anna Maria. "Image restoration in the presence of Poisson-Gaussian noise". Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00906718.
Pełny tekst źródłaLe, Floch Hervé. "Acquisition des images en microscopie electronique a balayage in situ". Toulouse 3, 1986. http://www.theses.fr/1986TOU30026.
Pełny tekst źródłaHenrot, Simon. "Déconvolution et séparation d'images hyperspectrales en microscopie". Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0187.
Pełny tekst źródłaHyperspectral imaging refers to the acquisition of spatial images at many spectral bands, e.g. in microscopy. Processing such data is often challenging due to the blur caused by the observation system, mathematically expressed as a convolution. The operation of deconvolution is thus necessary to restore the original image. Image restoration falls into the class of inverse problems, as opposed to the direct problem which consists in modeling the image degradation process, treated in part 1 of the thesis. Another inverse problem with many applications in hyperspectral imaging consists in extracting the pure materials making up the image, called endmembers, and their fractional contribution to the data or abundances. This problem is termed spectral unmixing and its resolution accounts for the nonnegativity of the endmembers and abundances. Part 2 presents algorithms designed to efficiently solve the hyperspectral image restoration problem, formulated as the minimization of a composite criterion. The methods are based on a common framework allowing to account for several a priori assumptions on the solution, including a nonnegativity constraint and the preservation of edges in the image. The performance of the proposed algorithms are demonstrated on fluorescence confocal images of bacterial biosensors. Part 3 deals with the spectral unmixing problem from a geometrical viewpoint. A sufficient condition on abundance coefficients for the identifiability of endmembers is proposed. We derive and study a joint observation model and mixing model and demonstrate the interest of performing deconvolution as a prior step to spectral unmixing on confocal Raman microscopy data
Henrot, Simon. "Déconvolution et séparation d'images hyperspectrales en microscopie". Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00931579.
Pełny tekst źródłaSibarita, Jean-Baptiste. "Formation et restauration d'images en microscopie à rayons : application à l'observation d'échantillons biologiques". Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00345364.
Pełny tekst źródłaKsiążki na temat "Image de microscopie"
Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. Wyd. 2. Berlin: Springer, 1998.
Znajdź pełny tekst źródłaR, Wootton, Springall D. R i Polak Julia M, red. Image analysis in histology: Conventional and confocal microscopy. Cambridge: Published in association with the Royal Postgraduage Medical School, University of London by Cambridge University Press, 1995.
Znajdź pełny tekst źródłaLynette, Ruschak, red. Magnification: A pop-up lift-the-flap book. New York: Lodestar Books, 1993.
Znajdź pełny tekst źródłaReimer, Ludwig. Transmission electron microscopy: Physics of image formation and microanalysis. Wyd. 2. Berlin: Springer-Verlag, 1989.
Znajdź pełny tekst źródła1958-, Wu Qiang, Merchant Fatima i Castleman Kenneth R, red. Microscope image processing. Amsterdam: Academic Press, 2008.
Znajdź pełny tekst źródła1949-, Williams David B., Pelton Alan R i Gronsky R, red. Images of materials. New York: Oxford University Press, 1991.
Znajdź pełny tekst źródłaHarmuth, Henning F. Dirac's difference equation and the physics of finite differences. Amsterdam: Academic Press, 2008.
Znajdź pełny tekst źródłaWitkin, Joan. Histology atlas of microscopic images. New York, N.Y.]: [Columbia University Health Sciences], 2003.
Znajdź pełny tekst źródłaJens, Rittscher, Machiraju Raghu i Wong Stephen T. C, red. Microscopic image analysis for life science applications. Boston [Mass.}: Artech House, 2008.
Znajdź pełny tekst źródłaChen, Liang-Chia, Guo-Wei Wu, Sanjeev Kumar Singh i Wei-Hsin Chein. Diffractive Image Microscopy for 3D Imaging. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7782-2.
Pełny tekst źródłaCzęści książek na temat "Image de microscopie"
Cinquin, Bertrand, Joyce Y. Kao i Mark L. Siegal. "i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in Drosophila Melanogaster". W Bioimage Data Analysis Workflows ‒ Advanced Components and Methods, 147–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76394-7_7.
Pełny tekst źródłaNakanishi, Tomoko M. "Real-Time Element Movement in a Plant". W Novel Plant Imaging and Analysis, 109–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_4.
Pełny tekst źródłaKumar, Amit, Fahimuddin Shaik, B. Abdul Rahim i D. Sravan Kumar. "Image Enhancement of Leukemia Microscopic Images". W Signal and Image Processing in Medical Applications, 17–37. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0690-6_4.
Pełny tekst źródłaCarlton, Robert Allen. "Image Analysis". W Pharmaceutical Microscopy, 173–211. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8831-7_7.
Pełny tekst źródłaInoué, Shinya, i Kenneth R. Spring. "Microscope Image Formation". W Video Microscopy, 13–117. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5859-0_2.
Pełny tekst źródłaInoué, Shinya. "Microscope Image Formation". W Video Microscopy, 93–148. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-6925-8_5.
Pełny tekst źródłaBright, D. S., D. E. Newbury, R. B. Marinenko,, E. B. Steel, i R. L. Myklebust. "Processing Images and Selecting Regions of Interest". W Images Of Materials, 309–37. Oxford University PressNew York, NY, 1992. http://dx.doi.org/10.1093/oso/9780195058567.003.0011.
Pełny tekst źródłaOrchard, Guy. "Light microscopy and digital pathology". W Histopathology, redaktorzy Guy Orchard i Brian Nation. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9780198717331.003.0014.
Pełny tekst źródłaM, Dr Leo Caroline, Dr Nachiammai N, Dr Harini Priya A.H i Dr R. Sathish Muthukumar. "FLUORESCENCE MICROSCOPE". W Emerging Trends in Oral Health Sciences and Dentistry. Technoarete Publishers, 2022. http://dx.doi.org/10.36647/etohsd/2022.01.b1.ch030.
Pełny tekst źródłaHowell, Gareth, i Kyle Dent. "Bioimaging: light and electron microscopy". W Tools and Techniques in Biomolecular Science. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199695560.003.0017.
Pełny tekst źródłaStreszczenia konferencji na temat "Image de microscopie"
Blochet, Baptiste, i Marc Guillon. "Single-shot phase and polarimetric microscopy". W 3D Image Acquisition and Display: Technology, Perception and Applications, JF2A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/3d.2024.jf2a.2.
Pełny tekst źródłaBueno, Gloria, Jesus Ruiz-Santaquiteria, Noelia Vallez, Jesus Salido, Gabriel Cristóbal i Oscar Deniz. "Telemicroscopy system applied to digital microscopy with a low-cost automated microscope". W Applications of Digital Image Processing XLVII, redaktorzy Andrew G. Tescher i Touradj Ebrahimi, 1. SPIE, 2024. http://dx.doi.org/10.1117/12.3028227.
Pełny tekst źródłaGalliopoulou, Eirini C., Christopher Jones, Lawrence Coghlan, Mariia Zimina, Tomas L. Martin, Peter E. J. Flewitt, Alan Cocks, John Siefert i Jonathan D. Parker. "Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels". W AM-EPRI 2024, 219–34. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0219.
Pełny tekst źródłaOzcan, Aydogan. "Virtual Staining of Label-free Tissue". W Frontiers in Optics, FM3D.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fm3d.1.
Pełny tekst źródłaStegmann, Heiko, i Flavio Cognigni. "Few-Shot AI Segmentation of Semiconductor Device FIB-SEM Tomography Data". W ISTFA 2024, 13–21. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0013.
Pełny tekst źródłaKurumundayil, Leslie, Theresa Trötschler, Jonas Schönauer, Doga Can Öner, Stefan Rein i Matthias Demant. "Microscopic Image Analysis of Printed Structures Without a Microscope: A Deep Learning Approach". W 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0802–4. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749537.
Pełny tekst źródłaKhoubafarin, Somaiyeh, Peuli Nath, Hannah Popofski i Aniruddha Ray. "High resolution Multi-Modal Microscopy using Microlens Substrates". W CLEO: Applications and Technology, ATu4B.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu4b.1.
Pełny tekst źródłaIncardona, Nicolo, Angel Tolosa, Gabriele Scrofani, Manuel Martinez-Corral i Genaro Saavedra. "The Lightfield Eyepiece: an Add-on for 3D Microscopy". W 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3tu5a.6.
Pełny tekst źródłaXing, Z. G., C. M. Zhao, J. Wei i Z. Wei. "3D Reconstruction Based on Single Defocused Microscopic Image". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86644.
Pełny tekst źródłaChao, S. H., M. R. Holl, J. H. Koschwanez, R. H. Carlson, L. S. Jang i D. R. Meldrum. "Velocity Measurements in Microchannels With a Laser Scanning Microscope and Particle Linear Image Velocimetry". W ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2432.
Pełny tekst źródłaRaporty organizacyjne na temat "Image de microscopie"
Greaves, C., i J. B. R. Eamer. Focus stacking for cataloguing, presentation, and identification of microfossils in marine sediments. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331355.
Pełny tekst źródłaMoon, Bill. Employment of Crystallographic Image Processing Techniques to Scanning Probe Microscopy Images of Two-Dimensional Periodic Objects. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.699.
Pełny tekst źródłaPennycook, S. J., i A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), czerwiec 2008. http://dx.doi.org/10.2172/939888.
Pełny tekst źródłaDabros, M. J., i P. J. Mudie. An Automated Microscope System For Image Analysis in Palynology and Micropaleontology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120356.
Pełny tekst źródłaSalapaka, Srinivasa M., i Petros G. Voulgaris. Fast Scanning and Fast Image Reconstruction in Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, marzec 2009. http://dx.doi.org/10.21236/ada495364.
Pełny tekst źródłaBajcsy, Peter, i Nathan Hotaling. Interoperability of web computational plugins for large microscopy image analyses. Gaithersburg, MD: National Institute of Standards and Technology, marzec 2020. http://dx.doi.org/10.6028/nist.ir.8297.
Pełny tekst źródłaWendelberger, James G. Localized Similar Image Texture in Images of Sample Laser Confocal Microscope for Area: FY15 DE07 SW C1 Zone 1 & 2 Section b. Office of Scientific and Technical Information (OSTI), luty 2019. http://dx.doi.org/10.2172/1496724.
Pełny tekst źródłaBolgert, Peter J. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1049731.
Pełny tekst źródłaGłąb, Tomasz, Jarosław Knaga, Tomasz Zaleski, Paweł Dziwisz, Jan Gluza i Dariusz Glanas. Determination of soil particle size distribution using computer analysis of microscopic images. Publishing House of the University of Agriculture in Krakow, 2025. https://doi.org/10.15576/repourk/2025.1.3.
Pełny tekst źródłaWendelberger, James. Template size and proper overlap detection in Laser Confocal Microscope (LCM) images. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1812643.
Pełny tekst źródła