Gotowa bibliografia na temat „InceptionResNetV2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „InceptionResNetV2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "InceptionResNetV2"
Ullah, Naeem, Javed Ali Khan, Mohammad Sohail Khan, et al. "An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning." Applied Sciences 12, no. 11 (2022): 5645. http://dx.doi.org/10.3390/app12115645.
Pełny tekst źródłaWijaya, Jodi, and Kusrini Kusrini. "Classification of Coffee Fruit Ripe Levels from the Tree Using InceptionResnetv2, and MobileNetv2." Bitnet: Jurnal Pendidikan Teknologi Informasi 10, no. 1 (2025): 70–79. https://doi.org/10.33084/bitnet.v10i1.9278.
Pełny tekst źródłaKurniawan, Vallent Austin Theasar, Elan Cahya Niswary, Christian S.k.aditya, and Didih Rizki Chandranegara. "BRAIN TUMOR CLASSIFICATION USING INCEPTIONRESNET-V2 AND TRANSFER LEARNING APPROACH." JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) 10, no. 1 (2024): 91–99. http://dx.doi.org/10.33480/jitk.v10i1.5223.
Pełny tekst źródłaYazid Aufar, Muhammad Helmy Abdillah, and Jiki Romadoni. "Web-based CNN Application for Arabica Coffee Leaf Disease Prediction in Smart Agriculture." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, no. 1 (2023): 71–79. http://dx.doi.org/10.29207/resti.v7i1.4622.
Pełny tekst źródłaPROCHUKHAN, Dmitro. "FEATURES OF THE MODIFICATION OF THE INCEPTIONRESNETV2 ARCHITECTURE AND THE CREATION OF A DIAGNOSTIC SYSTEM FOR DETERMINING THE DEGREE OF DAMAGE TO RETINAL VESSELS." Computer systems and information technologies, no. 1 (March 28, 2024): 27–32. http://dx.doi.org/10.31891/csit-2024-1-3.
Pełny tekst źródłaNinama, Hitesh, Jagdish Raikwal, and Pushpa Raikwal. "Ensemble Transfer Learning for Automated Gauge Reading Detection and Prediction." Scalable Computing: Practice and Experience 26, no. 5 (2025): 2130–44. https://doi.org/10.12694/scpe.v26i5.4786.
Pełny tekst źródłaJiang, Kaiyuan, Jiawei Zhang, Haibin Wu, Aili Wang, and Yuji Iwahori. "A Novel Digital Modulation Recognition Algorithm Based on Deep Convolutional Neural Network." Applied Sciences 10, no. 3 (2020): 1166. http://dx.doi.org/10.3390/app10031166.
Pełny tekst źródłaKalkan, Muruvvet, Mehmet S. Guzel, Fatih Ekinci, Ebru Akcapinar Sezer, and Tunc Asuroglu. "Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification." Cancers 16, no. 19 (2024): 3321. http://dx.doi.org/10.3390/cancers16193321.
Pełny tekst źródłaHuang, Youran. "Research on garbage sorting robotic arm based on image vision." Journal of Physics: Conference Series 2741, no. 1 (2024): 012020. http://dx.doi.org/10.1088/1742-6596/2741/1/012020.
Pełny tekst źródłaCheritha, K., S. Akhil, V. Bhanu Prakash, and A. Akhil Reddy. "Deepfake Detection using Deep Learning with InceptionV3." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44058.
Pełny tekst źródłaRozprawy doktorskie na temat "InceptionResNetV2"
RASOOL, AALE. "DETECTING DEEPFAKES WITH MULTI-MODEL NEURAL NETWORKS: A TRANSFER LEARNING APPROACH." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19993.
Pełny tekst źródłaCzęści książek na temat "InceptionResNetV2"
Ganesh, Mukkesh, Sanjana Dulam, and Pattabiraman Venkatasubbu. "Diabetic Retinopathy Diagnosis with InceptionResNetV2, Xception, and EfficientNetB3." In Artificial Intelligence and Technologies. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6448-9_41.
Pełny tekst źródłaSharma, Osho, Akashdeep Sharma, and Arvind Kalia. "Windows Malware Hunting with InceptionResNetv2 Assisted Malware Visualization Approach." In Proceedings of International Conference on Computational Intelligence and Data Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0609-3_12.
Pełny tekst źródłaVodnala, Deepika, Konkathi Shreya, Maduru Sandhya, and Cholleti Varsha. "Skin Cancer Detection Using Convolutional Neural Networks and InceptionResNetV2." In Algorithms for Intelligent Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7041-2_50.
Pełny tekst źródłaZubair, Fida, and Moutaz Saleh. "Enhancing Tomato Crop Health: Leveraging Modified InceptionResNetV2 for Disease Detection." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-82153-0_25.
Pełny tekst źródłaSimon, Philomina, and V. Uma. "Integrating InceptionResNetv2 Model and Machine Learning Classifiers for Food Texture Classification." In Advances in Cognitive Science and Communications. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8086-2_51.
Pełny tekst źródłaAkhand, Md Nafis Tahmid, Sunanda Das, and Mahmudul Hasan. "Traffic Density Estimation Using Transfer Learning with Pre-trained InceptionResNetV2 Network." In Machine Intelligence and Data Science Applications. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2347-0_28.
Pełny tekst źródłaMittal, Shubh, Tisha Chawla, and Hiteshwar Kumar Azad. "InceptionResNetV2 and KNN-Based Detection of Yellow Vein Mosaic Virus in Okra." In Innovative Computing and Communications. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3817-5_31.
Pełny tekst źródłaSingh, Saravjeet, Jatin Arora, and Monika Sethi. "Pothole Classification Using DenseNet Model: An Empirical Analysis with CNN and InceptionResNetV2." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66594-3_4.
Pełny tekst źródłaTamilkodi, R., A. Harika, Jetti Siva Kumar, P. M. V. D. Siva Kumar, Chadaram Krishnasai, and M. R. N. Venkata Akhil. "Enhancing Cybersecurity with AI: A Deepfake Detection Framework Using InceptionResNetV2 and LSTM." In Algorithms in Advanced Artificial Intelligence. CRC Press, 2025. https://doi.org/10.1201/9781003641537-16.
Pełny tekst źródłaPatel, Vinitkumar Vasantbhai, and Arvind R. Yadav. "ISLO-Tuned InceptionResNetV2 and 3D U-Net: A Powerful Duo for Automated Renal Cancer Diagnosis." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-1188-1_1.
Pełny tekst źródłaStreszczenia konferencji na temat "InceptionResNetV2"
Ravale, Ujwala, Riya Ramesh Tattu, Ashish Baban Bhoir, and Sneha Bhaskar Mahajan. "Deepfake Detection using InceptionResNetV2 Model." In 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC). IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10730917.
Pełny tekst źródłaRazlan, Nurul Natasha, Raihah Aminuddin, Nurbaity Sabri, Shafaf Ibrahim, and Anis Amilah Shari. "Visual Facial Paralysis Detection using InceptionResNetV2." In 2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). IEEE, 2024. http://dx.doi.org/10.1109/i2cacis61270.2024.10649871.
Pełny tekst źródłaKiran, V. Gopi, T. Hemanth Babu, Vidula N. A, and Rimjhim Padam Singh. "Enhanced Pomegranate Grading Using InceptionResNetV2 with Transformer Integration." In 2024 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2024. https://doi.org/10.1109/wiecon-ece64149.2024.10914841.
Pełny tekst źródłaSaini, Aradhna, Attiuttama, Sheenam Naaz, Anushka Shivhare, Gaurav Dhuriya, and Neha Yadav. "Deepfake Detection: Leveraging InceptionResNetV2 and LSTM for Enhanced Accuracy." In 2025 International Conference on Pervasive Computational Technologies (ICPCT). IEEE, 2025. https://doi.org/10.1109/icpct64145.2025.10941494.
Pełny tekst źródłaKumar, Aditya, and Leema Nelson. "Advanced Melanoma Detection with InceptionResNetV2 Using Skin Lesion Images." In 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI). IEEE, 2025. https://doi.org/10.1109/icmsci62561.2025.10894382.
Pełny tekst źródłaR, Mahesh T., P. Shenbagavalli, T. Mohanraj, P. Amala, K. Anitha, and Arastu Thakur. "Enhancing Histopathological Image Classification through InceptionResNetV2: A Deep Learning Approach." In 2024 International Conference on Emerging Research in Computational Science (ICERCS). IEEE, 2024. https://doi.org/10.1109/icercs63125.2024.10895005.
Pełny tekst źródłaNasra, Parul, Sheifali Gupta, Sripelli Jagadish, and Anmol Rattan Singh. "Deep Learning for Oral Disease Detection: Leveraging InceptionResNetV2 for Automated Diagnosis." In 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0. IEEE, 2025. https://doi.org/10.1109/otcon65728.2025.11070336.
Pełny tekst źródłaPatnaik, Rahul, Noel Shaji Mathew, Muhammad Ammar Siddiqui, Mohana, Ramakanth Kumar P, and Geetha K. S. "Robust Brain Tumor Classification of MRI Images Using Deep Learning via InceptionResNetV2." In 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2024. https://doi.org/10.1109/csitss64042.2024.10817000.
Pełny tekst źródłaKaushik, Pratham, and Pooja Sharma. "Efficient Eye Disease Detection: A Deep Learning Approach with InceptionResNetV2 for Retinal Image Classification." In 2024 International Conference on Advances in Computing, Communication and Materials (ICACCM). IEEE, 2024. https://doi.org/10.1109/icaccm61117.2024.11059202.
Pełny tekst źródłaTamilselvi, M., R. Ashwini, S. Ravi, Rajalakshmi S, Chadge Rajkumar, and Hamed Fawareh. "Enhanced Model for Brain Tumor Detection Accuracy Using Inceptionresnetv2 compared to VGG19 and MobileNet Models." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910388.
Pełny tekst źródła