Artykuły w czasopismach na temat „Inhibitory synapse”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Inhibitory synapse”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge, and Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development." Journal of Cell Biology 200, no. 3 (2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Pełny tekst źródłaDejanovic, Borislav, Tiffany Wu, Ming-Chi Tsai, et al. "Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models." Nature Aging 2, no. 9 (2022): 837–50. http://dx.doi.org/10.1038/s43587-022-00281-1.
Pełny tekst źródłaHu, Xiaoge, Jian-hong Luo, and Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS." BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Pełny tekst źródłaSuckow, Arthur T., Davide Comoletti, Megan A. Waldrop та ін. "Expression of Neurexin, Neuroligin, and Their Cytoplasmic Binding Partners in the Pancreatic β-Cells and the Involvement of Neuroligin in Insulin Secretion". Endocrinology 149, № 12 (2008): 6006–17. http://dx.doi.org/10.1210/en.2008-0274.
Pełny tekst źródłaJasinska, Malgorzata, Ewa Siucinska, Ewa Jasek, Jan A. Litwin, Elzbieta Pyza, and Malgorzata Kossut. "Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex." Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9828517.
Pełny tekst źródłaOverstreet, Linda S., and Gary L. Westbrook. "Synapse Density Regulates Independence at Unitary Inhibitory Synapses." Journal of Neuroscience 23, no. 7 (2003): 2618–26. http://dx.doi.org/10.1523/jneurosci.23-07-02618.2003.
Pełny tekst źródłaHines, Pamela J. "Inhibitory synapse specificity." Science 363, no. 6425 (2019): 360.6–361. http://dx.doi.org/10.1126/science.363.6425.360-f.
Pełny tekst źródłaJasinska, Malgorzata, Ewa Siucinska, Stansislaw Glazewski, Elzbieta Pyza, and And Kossut. "Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse." Acta Neurobiologiae Experimentalis 66, no. 2 (2006): 99–104. http://dx.doi.org/10.55782/ane-2006-1595.
Pełny tekst źródłaWilson, Emily S., and Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration." Molecular Biology of the Cell 29, no. 24 (2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Pełny tekst źródłaBarreira da Silva, Rosa, Claudine Graf, and Christian Münz. "Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells." Blood 118, no. 25 (2011): 6487–98. http://dx.doi.org/10.1182/blood-2011-07-366328.
Pełny tekst źródłaTreanor, Bebhinn, Peter M. P. Lanigan, Sunil Kumar, et al. "Microclusters of inhibitory killer immunoglobulin–like receptor signaling at natural killer cell immunological synapses." Journal of Cell Biology 174, no. 1 (2006): 153–61. http://dx.doi.org/10.1083/jcb.200601108.
Pełny tekst źródłaTakesian, Anne E., Vibhakar C. Kotak, and Dan H. Sanes. "Age-dependent effect of hearing loss on cortical inhibitory synapse function." Journal of Neurophysiology 107, no. 3 (2012): 937–47. http://dx.doi.org/10.1152/jn.00515.2011.
Pełny tekst źródłaFlores, Carmen E., Irina Nikonenko, Pablo Mendez, Jean-Marc Fritschy, Shiva K. Tyagarajan, and Dominique Muller. "Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation." Proceedings of the National Academy of Sciences 112, no. 1 (2014): E65—E72. http://dx.doi.org/10.1073/pnas.1411170112.
Pełny tekst źródłaRamaglia, Valeria, Mohit Dubey, M. Alfonso Malpede, et al. "Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory." Acta Neuropathologica 142, no. 4 (2021): 643–67. http://dx.doi.org/10.1007/s00401-021-02338-8.
Pełny tekst źródłaSu, Jianmin, Jiang Chen, Kumiko Lippold, et al. "Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex." Journal of Cell Biology 212, no. 6 (2016): 721–36. http://dx.doi.org/10.1083/jcb.201509085.
Pełny tekst źródłaLegendre, P. "The glycinergic inhibitory synapse." Cellular and Molecular Life Sciences 58, no. 5 (2001): 760–93. http://dx.doi.org/10.1007/pl00000899.
Pełny tekst źródłaHolmes, William R., and William B. Levy. "Quantifying the Role of Inhibition in Associative Long-Term Potentiation in Dentate Granule Cells With Computational Models." Journal of Neurophysiology 78, no. 1 (1997): 103–16. http://dx.doi.org/10.1152/jn.1997.78.1.103.
Pełny tekst źródłaWoodin, Melanie A., Toshiro Hamakawa, Mayumi Takasaki, Ken Lukowiak, and Naweed I. Syed. "Trophic Factor-Induced Plasticity of Synaptic Connections Between Identified Lymnaea Neurons." Learning & Memory 6, no. 3 (1999): 307–16. http://dx.doi.org/10.1101/lm.6.3.307.
Pełny tekst źródłaHoon, Mrinalini, Raunak Sinha, Haruhisa Okawa, et al. "Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells." Proceedings of the National Academy of Sciences 112, no. 41 (2015): 12840–45. http://dx.doi.org/10.1073/pnas.1510483112.
Pełny tekst źródłaELMARIAH, SARINA B., ETHAN G. HUGHES, EUN JOO OH, and RITA J. BALICE-GORDON. "Neurotrophin signaling among neurons and glia during formation of tripartite synapses." Neuron Glia Biology 1, no. 4 (2004): 339–49. http://dx.doi.org/10.1017/s1740925x05000189.
Pełny tekst źródłaKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka, and Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons." Journal of Cell Biology 194, no. 2 (2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Pełny tekst źródłaJasinska, Malgorzata, Anna Grzegorczyk, Ewa Jasek, et al. "Daily rhythm of synapse turnover in mouse somatosensory cortex." Acta Neurobiologiae Experimentalis 74, no. 1 (2014): 104–10. http://dx.doi.org/10.55782/ane-2014-1977.
Pełny tekst źródłaWoo, Jooyeon, Seok-Kyu Kwon, Jungyong Nam, et al. "The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development." Journal of Cell Biology 201, no. 6 (2013): 929–44. http://dx.doi.org/10.1083/jcb.201209132.
Pełny tekst źródłaLevinson, Joshua N., and Alaa El-Husseini. "New Players Tip the Scales in the Balance between Excitatory and Inhibitory Synapses." Molecular Pain 1 (January 1, 2005): 1744–8069. http://dx.doi.org/10.1186/1744-8069-1-12.
Pełny tekst źródłaLee, Sang-Eun, Yoonju Kim, Jeong-Kyu Han, et al. "nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology." Proceedings of the National Academy of Sciences 113, no. 24 (2016): 6749–54. http://dx.doi.org/10.1073/pnas.1600944113.
Pełny tekst źródłaThakar, Sonal, Liqing Wang, Ting Yu, et al. "Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation." Proceedings of the National Academy of Sciences 114, no. 4 (2017): E610—E618. http://dx.doi.org/10.1073/pnas.1612062114.
Pełny tekst źródłaOjima, Daiki, Yoko Tominaga, Takashi Kubota, et al. "Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of d-Cycloserine." International Journal of Molecular Sciences 25, no. 17 (2024): 9674. http://dx.doi.org/10.3390/ijms25179674.
Pełny tekst źródłaApollonio, Benedetta, Mariam Fanous, Mohamed-Reda Benmebarek, et al. "CC-122 Repairs T Cell Activation in Chronic Lymphocytic Leukemia That Results in a Concomitant Increase in PD-1:PD-L1 and CTLA-4 Immune Checkpoint Expression at the Immunological Synapse." Blood 126, no. 23 (2015): 1738. http://dx.doi.org/10.1182/blood.v126.23.1738.1738.
Pełny tekst źródłaIshibashi, Masaru, Kiyoshi Egawa, and Atsuo Fukuda. "Diverse Actions of Astrocytes in GABAergic Signaling." International Journal of Molecular Sciences 20, no. 12 (2019): 2964. http://dx.doi.org/10.3390/ijms20122964.
Pełny tekst źródłaZhang, Lulu, Yongzhi Zhang, Furong Liu, Qingyuan Chen, Yangbo Lian, and Quanlong Ma. "On-Chip Photonic Synapses with All-Optical Memory and Neural Network Computation." Micromachines 14, no. 1 (2022): 74. http://dx.doi.org/10.3390/mi14010074.
Pełny tekst źródłaKuljis, Dika A., Kristina D. Micheva, Ajit Ray, et al. "Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons." International Journal of Molecular Sciences 22, no. 18 (2021): 10032. http://dx.doi.org/10.3390/ijms221810032.
Pełny tekst źródłaWichmann, Carolin, and Thomas Kuner. "Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences." Physiological Reviews 102, no. 1 (2022): 269–318. http://dx.doi.org/10.1152/physrev.00039.2020.
Pełny tekst źródłaGonzalez-Burgos, Guillermo, Diana C. Rotaru, Aleksey V. Zaitsev, Nadezhda V. Povysheva, and David A. Lewis. "GABA Transporter GAT1 Prevents Spillover at Proximal and Distal GABA Synapses Onto Primate Prefrontal Cortex Neurons." Journal of Neurophysiology 101, no. 2 (2009): 533–47. http://dx.doi.org/10.1152/jn.91161.2008.
Pełny tekst źródłaHarrison, John M., Richard G. Allen, Michael J. Pellegrino, John T. Williams, and Olivier J. Manzoni. "Chronic Morphine Treatment Alters Endogenous Opioid Control of Hippocampal Mossy Fiber Synaptic Transmission." Journal of Neurophysiology 87, no. 5 (2002): 2464–70. http://dx.doi.org/10.1152/jn.2002.87.5.2464.
Pełny tekst źródłaPEREIRA, T., M. S. BAPTISTA, J. KURTHS, and M. B. REYES. "ONSET OF PHASE SYNCHRONIZATION IN NEURONS WITH CHEMICAL SYNAPSE." International Journal of Bifurcation and Chaos 17, no. 10 (2007): 3545–49. http://dx.doi.org/10.1142/s0218127407019342.
Pełny tekst źródłaQian, N., and T. J. Sejnowski. "When is an inhibitory synapse effective?" Proceedings of the National Academy of Sciences 87, no. 20 (1990): 8145–49. http://dx.doi.org/10.1073/pnas.87.20.8145.
Pełny tekst źródłaZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae, and Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing." ECS Meeting Abstracts MA2022-02, no. 32 (2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Pełny tekst źródłaFenyves, Bánk G., Gábor S. Szilágyi, Zsolt Vassy, Csaba Sőti, and Peter Csermely. "Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network." PLOS Computational Biology 16, no. 12 (2020): e1007974. http://dx.doi.org/10.1371/journal.pcbi.1007974.
Pełny tekst źródłaGrimes, William N., Jun Zhang, Hua Tian, et al. "Complex inhibitory microcircuitry regulates retinal signaling near visual threshold." Journal of Neurophysiology 114, no. 1 (2015): 341–53. http://dx.doi.org/10.1152/jn.00017.2015.
Pełny tekst źródłaLee, Seong-Eun, and Gum Hwa Lee. "Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons." International Journal of Molecular Sciences 22, no. 14 (2021): 7510. http://dx.doi.org/10.3390/ijms22147510.
Pełny tekst źródłaNerlich, Jana, Thomas Kuenzel, Christian Keine, Andrej Korenic, Rudolf Rübsamen, and Ivan Milenkovic. "Dynamic fidelity control to the central auditory system: synergistic glycine/GABAergic inhibition in the cochlear nucleus." Journal of Neuroscience 34, no. 35 (2014): 11604–20. https://doi.org/10.1523/JNEUROSCI.0719-14.2014.
Pełny tekst źródłaGardner, D. "Sets of synaptic currents paired by common presynaptic or postsynaptic neurons." Journal of Neurophysiology 61, no. 4 (1989): 845–53. http://dx.doi.org/10.1152/jn.1989.61.4.845.
Pełny tekst źródłaAli, Heba, Lena Marth, and Dilja Krueger-Burg. "Neuroligin-2 as a central organizer of inhibitory synapses in health and disease." Science Signaling 13, no. 663 (2020): eabd8379. http://dx.doi.org/10.1126/scisignal.abd8379.
Pełny tekst źródłaUnda, Brianna K., Vickie Kwan, and Karun K. Singh. "Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1." Neural Plasticity 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7694385.
Pełny tekst źródłaNiraula, Suraj, Shirley ShiDu Yan, and Jaichandar Subramanian. "Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity." Journal of Neuroscience, November 27, 2023, JN—RM—0702–23. http://dx.doi.org/10.1523/jneurosci.0702-23.2023.
Pełny tekst źródłaDzyubenko, Egor, Michael Fleischer, Daniel Manrique-Castano, et al. "Inhibitory control in neuronal networks relies on the extracellular matrix integrity." Cellular and Molecular Life Sciences, June 15, 2021. http://dx.doi.org/10.1007/s00018-021-03861-3.
Pełny tekst źródłaBoxer, Emma E., and Jason Aoto. "Neurexins and their ligands at inhibitory synapses." Frontiers in Synaptic Neuroscience 14 (December 21, 2022). http://dx.doi.org/10.3389/fnsyn.2022.1087238.
Pełny tekst źródłaHernández-Vivanco, Alicia, Esther Jiménez-Redondo, Nuria Cano-Adamuz, and Pablo Méndez. "Protein kinase A-dependent plasticity of local inhibitory synapses from hilar somatostatin-expressing neurons." eneuro, September 21, 2023, ENEURO.0089–23.2023. http://dx.doi.org/10.1523/eneuro.0089-23.2023.
Pełny tekst źródłaWilson, Emily, Warren Knudson, and Karen Newell-Litwa. "Hyaluronan regulates synapse formation and function in developing neural networks." Scientific Reports 10, no. 1 (2020). http://dx.doi.org/10.1038/s41598-020-73177-y.
Pełny tekst źródłaLuo, Bin, Ziyang Liu, Dong Lin, et al. "ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity." Translational Psychiatry 11, no. 1 (2021). http://dx.doi.org/10.1038/s41398-021-01485-6.
Pełny tekst źródła