Gotowa bibliografia na temat „Interfacial deformation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Interfacial deformation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Interfacial deformation"
Stone, H. A., i L. G. Leal. "The effects of surfactants on drop deformation and breakup". Journal of Fluid Mechanics 220 (listopad 1990): 161–86. http://dx.doi.org/10.1017/s0022112090003226.
Pełny tekst źródłaMangipudi, V. S., i M. Tirrell. "Contact-Mechanics-Based Studies of Adhesion between Polymers". Rubber Chemistry and Technology 71, nr 3 (1.07.1998): 407–48. http://dx.doi.org/10.5254/1.3538490.
Pełny tekst źródłaPelipenko, Jan, Julijana Kristl, Romana Rošic, Saša Baumgartner i Petra Kocbek. "Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning". Acta Pharmaceutica 62, nr 2 (1.06.2012): 123–40. http://dx.doi.org/10.2478/v10007-012-0018-x.
Pełny tekst źródłaTAKADA, NAOKI, AKIO TOMIYAMA i SHIGEO HOSOKAWA. "LATTICE BOLTZMANN SIMULATION OF INTERFACIAL DEFORMATION". International Journal of Modern Physics B 17, nr 01n02 (20.01.2003): 179–82. http://dx.doi.org/10.1142/s0217979203017308.
Pełny tekst źródłaTakahashi, Yasuo, i Michinobu Inoue. "Numerical Study of Wire Bonding—Analysis of Interfacial Deformation Between Wire and Pad". Journal of Electronic Packaging 124, nr 1 (13.03.2001): 27–36. http://dx.doi.org/10.1115/1.1413765.
Pełny tekst źródłaSamanta, Amit, i Weinan E. "Interfacial diffusion aided deformation during nanoindentation". AIP Advances 6, nr 7 (lipiec 2016): 075002. http://dx.doi.org/10.1063/1.4958299.
Pełny tekst źródłaHaruki, Sakamaki, Kumagai Ichiro, Oishi Yoshihiko, Tasaka Yuji i Murai Yuichi. "1051 FLOWS AND INTERFACIAL DEFORMATION AROUND A HYDROFOIL BENEATH A FREE SURFACE". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1051–1_—_1051–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1051-1_.
Pełny tekst źródłaWETZEL, ERIC D., i CHARLES L. TUCKER. "Droplet deformation in dispersions with unequal viscosities and zero interfacial tension". Journal of Fluid Mechanics 426 (10.01.2001): 199–228. http://dx.doi.org/10.1017/s0022112000002275.
Pełny tekst źródłaLee, Doojin, i Amy Q. Shen. "Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows". Micromachines 12, nr 3 (6.03.2021): 272. http://dx.doi.org/10.3390/mi12030272.
Pełny tekst źródłaKomvopoulos, K., i W. Yan. "Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems". Journal of Tribology 120, nr 4 (1.10.1998): 808–13. http://dx.doi.org/10.1115/1.2833783.
Pełny tekst źródłaRozprawy doktorskie na temat "Interfacial deformation"
Hargreaves, Alexander Leighton. "Optical deformation of microdroplets at ultralow interfacial tension". Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11617/.
Pełny tekst źródłaTze, William tai-Yin. "Effects of Fiberimatiux Interactions on the Interfacial Deformation Micromechanics of Cellulose-Fiberipolymer Composites". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/TzeWT2003.pdf.
Pełny tekst źródłaTsai, Scott. "Magnetic Spheres in Viscous Flows and at Interfaces: Sorting, Coating, and Interfacial Deformation". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10151.
Pełny tekst źródłaEngineering and Applied Sciences
Rusli, Rafeadah. "Interfacial micromechanics of natural cellulose whisker polymer nanocomposites using Raman spectroscopy". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/interfacial-micromechanics-of-natural-cellulose-whisker-polymer-nanocomposites-using-raman-spectroscopy(2eab8693-78b1-4241-bcfb-f7d2ae39fbf6).html.
Pełny tekst źródłaZhou, Diwen. "Interfacial dynamics in complex fluids : studies of drop and free-surface deformation in polymer solutions". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17457.
Pełny tekst źródłaHabibzadeh, Pouya. "Small Scale Plasticity With Confinement and Interfacial Effects". Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/226220.
Pełny tekst źródłaDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Peng, Xuan. "Co-deformation and bonding of multi-component billets with application to Nb-Sn based superconductor processing". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127096847.
Pełny tekst źródłaTitle from first page of PDF file. Document formatted into pages; contains xix, 182 p.; also includes graphics (some col.). Includes bibliographical references (p. 177-182). Available online via OhioLINK's ETD Center
Strömbro, Jessica. "Micro-mechanical mechanisms for deformation in polymer-material structures". Doctoral thesis, KTH, Hållfasthetslära (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4626.
Pełny tekst źródłaQC 20100910
Abi, Chebel Nicolas. "Dynamique et rhéologie interfaciales à haute fréquence d'une goutte oscillante". Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT043G/document.
Pełny tekst źródłaWe present an experimental study of oscillating drop interfacial dynamics at a wide frequency range, especially at high frequency. A characterization method of drops oscillation dynamics has been developed. The oscillations are generated by imposing low amplitude periodic variation of volume to a drop which is attached to a capillary tip. The present method is based on the identification of the drop eigenmodes and the determination of their frequencies and damping rates. It has been applied to characterize several liquid-liquid systems. Three types of interface have been identified. For interfaces of type 1 (heptane/water without added surfactant), each eigenmode is modelled by a weakly damped linear oscillator. Eigenfrequencies and damping rates are well predicted by the linear theory. Interfaces of Types 2 and 3 are obtained by adding crude oil to the disperse phase. Oil native surfactants (asphaltenes, resins) adsorb on the drop interface and provide the latter with viscoelastic behaviour. For young interfaces (type 2 with aging time below 20 minutes), eigenfrequencies remain well predicted by the theory, which deals with non contaminated interfaces, whereas the measured damping rates are significantly higher than the theoretical values. On the other hand, aged interfaces (type 3) exhibit different eigenmodes, of which eigenfrequencies are much higher than the resonance frequencies measured for the young interfaces. At high frequency, the dynamics of aged interfaces are governed by the elasticity of the network constituted by the crude oil amphiphilic species, while the dynamics of young interfaces are governed by interfacial tension. Freely decaying oscillations of a rising drop in a liquid at rest without added surfactant were also considered. Measured frequencies for the first four eigenmodes are in good agreement with the linear theory. However, measured damping rates are much higher than the theoretical rates for non contaminated interfaces. In fact, residual adsorbed species at the heptane/water interface induce Marangoni effects and thus gradients of interfacial tension. Therefore, vorticity production within the boundary layers is enhanced, which explains the observed increase of the oscillation damping rates
Zhang, Hao. "Écoulement des fluides et déformation interfaciale : nano-rhéologie et force de portance". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0027.
Pełny tekst źródłaThis thesis investigates the interplay between fluid flow and interfacial deformation using Atomic Force Microscopy (AFM). First, AFM was employed to explore the resonant thermal capillary fluctuations (RTCF) of bubble and drop surfaces, enabling the measurement of surface elasticity and bulk viscosity in surfactant-laden air/water interfaces and polymer solutions. These measurements extended the frequency range for rheological investigations, effectively overcoming the limitations of classical rheometers.Next, we introduced a non-contact method to assess the mechanical properties of living cells based on the elastohydrodynamic (EHD) interaction between the thermal vibrations of the AFM cantilever and the cell deformations. This method enabled the precise determination of the elastic modulus of a living cell for different frequencies.Finally, we conducted the first direct and quantitative measurement of the lift force acting on a sphere moving along a liquid-liquid interface. This force, arising from the coupling between viscous flow and capillary deformation of the interface, was measured as a function of the distance between the sphere and the interface using an atomic force microscope (AFM). We investigated various liquid interfaces, working frequencies, sliding velocities, and two different sphere radii. The findings provide valuable insights into interfacial phenomena and enhance the understanding of interactions between fluid flow and soft interfaces
Książki na temat "Interfacial deformation"
Thermocapillary flow with evaporation and condensation at low gravit. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaKudinov, V. V., N. V. Korneeva i I. K. Krylov. Effect of components on the properties of composite materials. Nauka Publishers, 2021. http://dx.doi.org/10.7868/9785020408654.
Pełny tekst źródłaCzęści książek na temat "Interfacial deformation"
Aust, K. T., U. Erb i G. Palumbo. "Interfacial Structures and Properties". W Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 107–28. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1765-4_5.
Pełny tekst źródłaBuisson, M., E. Patoor i M. Berveiller. "Constitutive Equations for Deformations Induced by Interfacial Motions". W Anisotropy and Localization of Plastic Deformation, 536–39. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_124.
Pełny tekst źródłaBalasubramaniam, R. "Unsteady Thermocapillary Flow and Free Surface Deformation in a Thin Liquid Layer". W Interfacial Fluid Dynamics and Transport Processes, 201–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_10.
Pełny tekst źródłaMoran, B., M. Gosz i J. D. Achenbach. "Effect of a Viscoelastic Interfacial Zone on the Mechanical Behavior and Failure of Fiber-Reinforced Composites". W Inelastic Deformation of Composite Materials, 35–49. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9109-8_2.
Pełny tekst źródłaShibutani, Yoji, Hiroshi Kitagawa i Takayuki Nakamura. "Growth of interfacial inhomogeneous deformation in thin laminated material subjected to biaxial tension". W Large Plastic Deformations, 261–69. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-29.
Pełny tekst źródłaBarrett, Christopher, i Haitham El Kadiri. "The Deformation Gradient of Interfacial Defects on Twin-like Interfaces". W Magnesium Technology 2015, 121–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093428.ch24.
Pełny tekst źródłaZinemanas, Daniel, i Avinoam Nir. "A Dynamic Free Surface Deformation Driven by Anisotropic Interfacial Forces". W Variational Methods for Free Surface Interfaces, 165–72. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_19.
Pełny tekst źródłaBarrett, Christopher, i Haitham El Kadiri. "The Deformation Gradient of Interfacial Defects on Twin-like Interfaces". W Magnesium Technology 2015, 121–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48185-2_24.
Pełny tekst źródłaZeng, Tongyan, Essam F. Abo-Serie, Manus Henry i James Jewkes. "Thermal Optimisation Model for Cooling Channel Design Using the Adjoint Method in 3D Printed Aluminium Die-Casting Tools". W Springer Proceedings in Energy, 333–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_31.
Pełny tekst źródłaHagiwara, Yoshimichi. "Numerical Simulation of the Velocity Fluctuation and the Interfacial Deformation of Liquid-Liquid Dispersed Two-Phase Flow". W Fluid Mechanics and Its Applications, 179–83. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0457-9_34.
Pełny tekst źródłaStreszczenia konferencji na temat "Interfacial deformation"
Váradi, Károly, Zoltán Néder, Klaus Friedrich i Joachim Flöck. "Finite Element Contact, Stress and Strain Analysis of a Composite Fibre-Matrix Micro System Subjected to Ball Indentation". W ASME 1997 International Mechanical Engineering Congress and Exposition, 23–36. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1340.
Pełny tekst źródłaIto, Hideaki, Tsutomu Ezumi, Susumu Takahashi i Kazuo Sato. "Impact shearing deformation behavior of interfacial crack in ENF test specimen". W 24th International Congress on High-Speed Photography and Photonics, redaktorzy Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine i Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424261.
Pełny tekst źródłaJenn-Ming Song, Chien-Wei Su, Yi-Shao Lai i Ying-Ta Chiu. "Time dependent deformation behavior of interfacial intermetallic compounds in electronic solder joints". W 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2009. http://dx.doi.org/10.1109/impact.2009.5382227.
Pełny tekst źródłaHeffes, M. J., i H. F. Nied. "Analysis of Interface Cracking in Flip Chip Packages With Viscoplastic Solder Deformation". W ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35346.
Pełny tekst źródłaHandoko, R. A., J. L. Beuth, M. J. Stiger, F. S. Pettit i G. H. Meier. "Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2685.
Pełny tekst źródłaSharifi Kia, Danial, Shahrzad Towfighian i Congrui Jin. "Predicting the Output of a Triboelectric Energy Harvester Undergoing Mechanical Pressure". W ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9157.
Pełny tekst źródłaHossein, Mohammad A., Yue Zhang i Arend van der Zande. "Three-dimensional deformation and stretchable photonics enabled by interfacial slip in 2D material heterostructures". W Physical Chemistry of Semiconductor Materials and Interfaces IX, redaktorzy Daniel Congreve, Christian Nielsen i Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2567539.
Pełny tekst źródłaUtiugov, Grigorii, i Vladimir Chirkov. "The Change in Interfacial Tension Over Time and Its Effect on the Droplet Deformation Dynamics". W 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl49583.2022.9830945.
Pełny tekst źródłaSeol, Myeong-Lok, Jin-Woo Han, Jong-Ho Woo, Dong-Il Moon, Jee-Yeon Kim i Yang-Kyu Choi. "Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester". W 2014 IEEE International Electron Devices Meeting (IEDM). IEEE, 2014. http://dx.doi.org/10.1109/iedm.2014.7047010.
Pełny tekst źródłaYang, J., i K. Komvopoulos. "A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces". W ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64271.
Pełny tekst źródłaRaporty organizacyjne na temat "Interfacial deformation"
Hsiung, L. Interfacial Control of Deformation Twinning in Creep-Deformed TiAl/Ti3Al Nanolaminate. Office of Scientific and Technical Information (OSTI), listopad 2004. http://dx.doi.org/10.2172/15014527.
Pełny tekst źródłaDEFORMATION OF STEEL-BAMBOO COMPOSITE BEAM CONSIDERING THE EFFECT OF INTERFACIAL SLIPPAGE. The Hong Kong Institute of Steel Construction, wrzesień 2018. http://dx.doi.org/10.18057/ijasc.2018.14.3.1.
Pełny tekst źródła