Artykuły w czasopismach na temat „Intermittent chronic hypoxia”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Intermittent chronic hypoxia”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Martinez, Chloe-Anne, Bernadette Kerr, Charley Jin, Peter Cistulli, and Kristina Cook. "Obstructive Sleep Apnea Activates HIF-1 in a Hypoxia Dose-Dependent Manner in HCT116 Colorectal Carcinoma Cells." International Journal of Molecular Sciences 20, no. 2 (2019): 445. http://dx.doi.org/10.3390/ijms20020445.
Pełny tekst źródłaPrabhakar, Nanduri R. "Invited Review: Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms." Journal of Applied Physiology 90, no. 5 (2001): 1986–94. http://dx.doi.org/10.1152/jappl.2001.90.5.1986.
Pełny tekst źródłaMouradian, Gary C., Satyan Lakshminrusimha, and Girija G. Konduri. "Perinatal Hypoxemia and Oxygen Sensing." Comprehensive Physiology 11, no. 2 (2021): 1653–77. https://doi.org/10.1002/j.2040-4603.2021.tb00155.x.
Pełny tekst źródłaMa, Qiang, Renxiao Zhang, Yuliang Wei, Mengqing Liang, and Houguo Xu. "Effects of Intermittent and Chronic Hypoxia on Fish Size and Nutrient Metabolism in Tiger Puffer (Takifugu rubripes)." Animals 14, no. 17 (2024): 2470. http://dx.doi.org/10.3390/ani14172470.
Pełny tekst źródłaHunyor, Imre, and Kristina M. Cook. "Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 315, no. 4 (2018): R669—R687. http://dx.doi.org/10.1152/ajpregu.00036.2018.
Pełny tekst źródłaUsategui-Martín, Ricardo, Álvaro Del Del Real, José A. Sainz-Aja, et al. "Analysis of Bone Histomorphometry in Rat and Guinea Pig Animal Models Subject to Hypoxia." International Journal of Molecular Sciences 23, no. 21 (2022): 12742. http://dx.doi.org/10.3390/ijms232112742.
Pełny tekst źródłaCarreres, Lydie, Marion Mercey-Ressejac, Keerthi Kurma, et al. "Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma." Cells 11, no. 13 (2022): 2051. http://dx.doi.org/10.3390/cells11132051.
Pełny tekst źródłaWu, Ming-Jane, Stéphane Vinit, Chun-Lin Chen, and Kun-Ze Lee. "5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion." Neurorehabilitation and Neural Repair 34, no. 4 (2020): 333–43. http://dx.doi.org/10.1177/1545968320905806.
Pełny tekst źródłaSavransky, Vladimir, Ashika Nanayakkara, Jianguo Li, et al. "Chronic Intermittent Hypoxia Induces Atherosclerosis." American Journal of Respiratory and Critical Care Medicine 175, no. 12 (2007): 1290–97. http://dx.doi.org/10.1164/rccm.200612-1771oc.
Pełny tekst źródłaMakarenko, Vladislav V., Ying-Jie Peng, Shakil A. Khan, Jayasri Nanduri, Aaron P. Fox, and Nanduri R. Prabhakar. "Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia." Journal of Neurophysiology 122, no. 5 (2019): 1874–83. http://dx.doi.org/10.1152/jn.00435.2019.
Pełny tekst źródłaNeubauer, Judith A. "Invited Review: Physiological and pathophysiological responses to intermittent hypoxia." Journal of Applied Physiology 90, no. 4 (2001): 1593–99. http://dx.doi.org/10.1152/jappl.2001.90.4.1593.
Pełny tekst źródłaDouglas, Robert M., Naoyuki Miyasaka, Kan Takahashi, Adrianna Latuszek-Barrantes, Gabriel G. Haddad, and Hoby P. Hetherington. "Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, no. 3 (2007): R1254—R1259. http://dx.doi.org/10.1152/ajpregu.00404.2006.
Pełny tekst źródłaPeng, Ying-Jie, and Nanduri R. Prabhakar. "Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity." Journal of Applied Physiology 96, no. 3 (2004): 1236–42. http://dx.doi.org/10.1152/japplphysiol.00820.2003.
Pełny tekst źródłaPrabhakar, Nanduri R., R. Douglas Fields, Tracy Baker, and Eugene C. Fletcher. "Intermittent hypoxia: cell to system." American Journal of Physiology-Lung Cellular and Molecular Physiology 281, no. 3 (2001): L524—L528. http://dx.doi.org/10.1152/ajplung.2001.281.3.l524.
Pełny tekst źródłaArriaza, Karem, Julio Brito, Patricia Siques, et al. "Effects of Zinc on the Right Cardiovascular Circuit in Long-Term Hypobaric Hypoxia in Wistar Rats." International Journal of Molecular Sciences 24, no. 11 (2023): 9567. http://dx.doi.org/10.3390/ijms24119567.
Pełny tekst źródłaSheel, Andrew William, and Meaghan Joelle MacNutt. "Control of ventilation in humans following intermittent hypoxia." Applied Physiology, Nutrition, and Metabolism 33, no. 3 (2008): 573–81. http://dx.doi.org/10.1139/h08-008.
Pełny tekst źródłaSiques, Patricia, Ángel Luis López de Pablo, Julio Brito, et al. "Nitric Oxide and Superoxide Anion Balance in Rats Exposed to Chronic and Long Term Intermittent Hypoxia." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/610474.
Pełny tekst źródłaAragón-Vela, Jerónimo, Jacob Bejder, Jesús R Huertas, Julio Plaza-Diaz, and Nikolai B. Nordsborg. "Does intermittent exposure to high altitude increase the risk of cardiovascular disease in workers? A systematic narrative review." BMJ Open 10, no. 11 (2020): e041532. http://dx.doi.org/10.1136/bmjopen-2020-041532.
Pełny tekst źródłaXu, J., E. Geng, L. Brake, et al. "0237 Effect of Chronic Intermittent Hypoxia on Spatial Performance in Rats." Sleep 43, Supplement_1 (2020): A91. http://dx.doi.org/10.1093/sleep/zsaa056.235.
Pełny tekst źródłaSaxena and Jolly. "Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression." Biomolecules 9, no. 8 (2019): 339. http://dx.doi.org/10.3390/biom9080339.
Pełny tekst źródłaBeaudin, Andrew E., Sara E. Hartmann, Matiram Pun, and Marc J. Poulin. "Human cerebral blood flow control during hypoxia: focus on chronic pulmonary obstructive disease and obstructive sleep apnea." Journal of Applied Physiology 123, no. 5 (2017): 1350–61. http://dx.doi.org/10.1152/japplphysiol.00352.2017.
Pełny tekst źródłaMarciante, Alexandria B., Lei A. Wang, Joel T. Little, and J. Thomas Cunningham. "Caspase lesions of PVN-projecting MnPO neurons block the sustained component of CIH-induced hypertension in adult male rats." American Journal of Physiology-Heart and Circulatory Physiology 318, no. 1 (2020): H34—H48. http://dx.doi.org/10.1152/ajpheart.00350.2019.
Pełny tekst źródłaMilano, Giuseppina, Antonio F. Corno, Silvio Lippa, Ludwig K. von Segesser, and Michele Samaja. "Chronic and Intermittent Hypoxia Induce Different Degrees of Myocardial Tolerance to Hypoxia-Induced Dysfunction." Experimental Biology and Medicine 227, no. 6 (2002): 389–97. http://dx.doi.org/10.1177/153537020222700604.
Pełny tekst źródłaFletcher, Eugene C. "Invited Review: Physiological consequences of intermittent hypoxia: systemic blood pressure." Journal of Applied Physiology 90, no. 4 (2001): 1600–1605. http://dx.doi.org/10.1152/jappl.2001.90.4.1600.
Pełny tekst źródłaShameem, Mohammed, Alexa Sen, Rajeev Vikram, Chenchen Xia, and Ahmad Alshehri. "Hypoxia-induced cardioprotection: A review." Arhiv za farmaciju 74, no. 5 (2024): 658–78. http://dx.doi.org/10.5937/arhfarm74-53114.
Pełny tekst źródłaShameem, Mohammed, Alexa Sen, Rajeev Vikram, Chenchen Xia, and Ahmad Alshehri. "Hypoxia-induced cardioprotection: A review." Arhiv za farmaciju 74, no. 5 (2024): 658–78. http://dx.doi.org/10.5937/arhfarm72-53114.
Pełny tekst źródłaSong, Jihyun, Krishna M. Sundar, John Hoidal, and Josef T. Prchal. "Hematological Changes in Chronic Sustained Hypoxia and Chronic Intermittent Hypoxia in a Mouse Model." Blood 134, Supplement_1 (2019): 3525. http://dx.doi.org/10.1182/blood-2019-131309.
Pełny tekst źródłaSunderram, Jag, John Semmlow, Pranav Patel, et al. "Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic intermittent hypoxia in mice." Journal of Applied Physiology 121, no. 4 (2016): 944–52. http://dx.doi.org/10.1152/japplphysiol.00036.2016.
Pełny tekst źródłaNeckář, Jan, Irena Marková, František Novák та ін. "Increased expression and altered subcellular distribution of PKC-δ in chronically hypoxic rat myocardium: involvement in cardioprotection". American Journal of Physiology-Heart and Circulatory Physiology 288, № 4 (2005): H1566—H1572. http://dx.doi.org/10.1152/ajpheart.00586.2004.
Pełny tekst źródłaWaskova-Arnostova, Petra, Barbara Elsnicova, Dita Kasparova, et al. "Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria." Journal of Applied Physiology 119, no. 12 (2015): 1487–93. http://dx.doi.org/10.1152/japplphysiol.01035.2014.
Pełny tekst źródłaMarciante, Alexandria B., Brent Shell, George E. Farmer, and J. Thomas Cunningham. "Role of angiotensin II in chronic intermittent hypoxia-induced hypertension and cognitive decline." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 320, no. 4 (2021): R519—R525. http://dx.doi.org/10.1152/ajpregu.00222.2020.
Pełny tekst źródłaZhang, Jing, Xu Guo, Yanwei Shi, Jing Ma, and Guangfa Wang. "Intermittent hypoxia with or without hypercapnia is associated with tumorigenesis by decreasing the expression of brain derived neurotrophic factor and miR-34a in rats." Chinese Medical Journal 127, no. 1 (2014): 43–47. http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20131683.
Pełny tekst źródłaNanduri, Jayasri, Gregg L. Semenza, and Nanduri R. Prabhakar. "Epigenetic changes by DNA methylation in chronic and intermittent hypoxia." American Journal of Physiology-Lung Cellular and Molecular Physiology 313, no. 6 (2017): L1096—L1100. http://dx.doi.org/10.1152/ajplung.00325.2017.
Pełny tekst źródłaMorgan, Barbara J., Russell Adrian, Zun-yi Wang, Melissa L. Bates, and John M. Dopp. "Chronic intermittent hypoxia alters ventilatory and metabolic responses to acute hypoxia in rats." Journal of Applied Physiology 120, no. 10 (2016): 1186–95. http://dx.doi.org/10.1152/japplphysiol.00015.2016.
Pełny tekst źródłaKang, Jing, Yuanyuan Li, Ke Hu, et al. "Chronic intermittent hypoxia versus continuous hypoxia: Same effects on hemorheology?" Clinical Hemorheology and Microcirculation 63, no. 3 (2016): 245–55. http://dx.doi.org/10.3233/ch-151973.
Pełny tekst źródłaGreenberg, Harly E., Anthony Sica, Deirdre Batson, and Steven M. Scharf. "Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia." Journal of Applied Physiology 86, no. 1 (1999): 298–305. http://dx.doi.org/10.1152/jappl.1999.86.1.298.
Pełny tekst źródłaPrabhakar, Nanduri R., Ganesh K. Kumar, and Ying-Jie Peng. "Sympatho-adrenal activation by chronic intermittent hypoxia." Journal of Applied Physiology 113, no. 8 (2012): 1304–10. http://dx.doi.org/10.1152/japplphysiol.00444.2012.
Pełny tekst źródłaSavransky, Vladimir, Ashika Nanayakkara, Angelica Vivero, et al. "Chronic intermittent hypoxia predisposes to liver injury." Hepatology 45, no. 4 (2007): 1007–13. http://dx.doi.org/10.1002/hep.21593.
Pełny tekst źródłaTorres, Marta, Mauricio Rojas, Noelia Campillo, et al. "Parabiotic model for differentiating local and systemic effects of continuous and intermittent hypoxia." Journal of Applied Physiology 118, no. 1 (2015): 42–47. http://dx.doi.org/10.1152/japplphysiol.00858.2014.
Pełny tekst źródłaMartins, Fátima O., Joana F. Sacramento, Elena Olea, et al. "Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose Tissue Deregulation." Antioxidants 10, no. 8 (2021): 1233. http://dx.doi.org/10.3390/antiox10081233.
Pełny tekst źródłaShin, Mi-Kyung, Qiaoling Yao, Jonathan C. Jun, et al. "Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia." Journal of Applied Physiology 117, no. 7 (2014): 765–76. http://dx.doi.org/10.1152/japplphysiol.01133.2013.
Pełny tekst źródłaBader, Samuel B., Mark W. Dewhirst, and Ester M. Hammond. "Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer." Cancers 13, no. 1 (2020): 23. http://dx.doi.org/10.3390/cancers13010023.
Pełny tekst źródłaXu, J., E. Geng, L. Brake, et al. "0424 Effect of Chronic Intermittent Hypoxia on Global Cerebral Metabolic Rate of Oxygen Consumption in Rats." Sleep 43, Supplement_1 (2020): A162—A163. http://dx.doi.org/10.1093/sleep/zsaa056.421.
Pełny tekst źródłaMoreno-Indias, Isabel, Marta Torres, Josep M. Montserrat, et al. "Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea." European Respiratory Journal 45, no. 4 (2014): 1055–65. http://dx.doi.org/10.1183/09031936.00184314.
Pełny tekst źródłaPai, Peiying, Ching Jung Lai, Ching-Yuang Lin, Yi-Fan Liou, Chih-Yang Huang, and Shin-Da Lee. "Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia." Journal of Applied Physiology 120, no. 8 (2016): 982–90. http://dx.doi.org/10.1152/japplphysiol.01109.2014.
Pełny tekst źródłaBrito, Julio, Patricia Siques, Silvia M. Arribas, et al. "Adventitial Alterations Are the Main Features in Pulmonary Artery Remodeling due to Long-Term Chronic Intermittent Hypobaric Hypoxia in Rats." BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/169841.
Pełny tekst źródłaZabka, A. G., G. S. Mitchell, E. B. Olson, and M. Behan. "Selected Contribution: Chronic intermittent hypoxia enhances respiratory long-term facilitation in geriatric female rats." Journal of Applied Physiology 95, no. 6 (2003): 2614–23. http://dx.doi.org/10.1152/japplphysiol.00476.2003.
Pełny tekst źródłaNavarrete-Opazo, Angela, and Gordon S. Mitchell. "Therapeutic potential of intermittent hypoxia: a matter of dose." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307, no. 10 (2014): R1181—R1197. http://dx.doi.org/10.1152/ajpregu.00208.2014.
Pełny tekst źródłaKong, Weiwei, Yixin Liao, Liang Zhao, et al. "Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review." Biomedicines 11, no. 11 (2023): 2984. http://dx.doi.org/10.3390/biomedicines11112984.
Pełny tekst źródłaKatayama, Keisho, Curtis A. Smith, Kathleen S. Henderson, and Jerome A. Dempsey. "Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs." Journal of Applied Physiology 103, no. 6 (2007): 1942–49. http://dx.doi.org/10.1152/japplphysiol.00735.2007.
Pełny tekst źródła