Spis treści
Gotowa bibliografia na temat „Interpretability of AI Models for Parkinson's Disease Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Interpretability of AI Models for Parkinson's Disease Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Interpretability of AI Models for Parkinson's Disease Detection"
Samuel Fanijo, Uyok Hanson, Taiwo Akindahunsi, Idris Abijo i Tinuade Bolutife Dawotola. "Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases". World Journal of Advanced Research and Reviews 19, nr 2 (30.08.2023): 1578–87. http://dx.doi.org/10.30574/wjarr.2023.19.2.1432.
Pełny tekst źródłaAdeniran, Opeyemi Taiwo, Blessing Ojeme, Temitope Ezekiel Ajibola, Ojonugwa Oluwafemi Ejiga Peter, Abiola Olayinka Ajala, Md Mahmudur Rahman i Fahmi Khalifa. "Explainable MRI-Based Ensemble Learnable Architecture for Alzheimer’s Disease Detection". Algorithms 18, nr 3 (13.03.2025): 163. https://doi.org/10.3390/a18030163.
Pełny tekst źródłaHamza, Naeem, Nuaman Ahmed i Naeema Zainaba. "A Comparative Analysis of Traditional and AI-Driven Methods for Disease Detection: Novel Approaches, Methodologies, and Challenges". Journal of Medical Health Research and Psychiatry 01, nr 02 (2024): 01–03. https://doi.org/10.70844/jmhrp.2024.1.2.28.
Pełny tekst źródłaFatima, Shereen, Hidayatullah Shaikh, Attaullah Sahito i Asadullah Kehar. "A Review of Skin Disease Detection Using Deep Learning". VFAST Transactions on Software Engineering 12, nr 4 (31.12.2024): 220–38. https://doi.org/10.21015/vtse.v12i4.2022.
Pełny tekst źródłaHasan Saif, Fatima, Mohamed Nasser Al-Andoli i Wan Mohd Yaakob Wan Bejuri. "Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications". Applied Sciences 14, nr 22 (5.11.2024): 10121. http://dx.doi.org/10.3390/app142210121.
Pełny tekst źródłaRakhi Raghukumar, Aswathi V Nair, Amrutha Raju, Aina S Dcruz i Susheel George Joseph. "AI Used to Predict Alzheimer’s Disease". International Research Journal on Advanced Engineering and Management (IRJAEM) 2, nr 12 (12.12.2024): 3647–51. https://doi.org/10.47392/irjaem.2024.0541.
Pełny tekst źródłaIsmail Y i Vijaya Kumar Voleti. "A Review on Usage of Artificial Intelligence for Early Detection and Management of Alzheimer's Disease". Journal of Pharma Insights and Research 2, nr 5 (4.10.2024): 007–13. http://dx.doi.org/10.69613/06tz7453.
Pełny tekst źródłaPaul, Tanmoy, Omiya Hassan, Christina S. McCrae, Syed Kamrul Islam i Abu Saleh Mohammad Mosa. "An Explainable Fusion of ECG and SpO2-Based Models for Real-Time Sleep Apnea Detection". Bioengineering 12, nr 4 (3.04.2025): 382. https://doi.org/10.3390/bioengineering12040382.
Pełny tekst źródłaSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar i Ankur Jyoti Sarmah. "A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis". Journal of Physics: Conference Series 2919, nr 1 (1.12.2024): 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Pełny tekst źródłaGupta, Ayush, Jeya Mala D., Vishal Kumar Yadav i Mayank Arora. "Dissecting Retinal Disease: A Multi-Modal Deep Learning Approach with Explainable AI for Disease Classification across Various Classes". International Journal of Online and Biomedical Engineering (iJOE) 21, nr 02 (17.02.2025): 38–51. https://doi.org/10.3991/ijoe.v21i02.51409.
Pełny tekst źródłaRozprawy doktorskie na temat "Interpretability of AI Models for Parkinson's Disease Detection"
Filali, razzouki Anas. "Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease". Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Pełny tekst źródłaThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Części książek na temat "Interpretability of AI Models for Parkinson's Disease Detection"
Mittal, Shashank, Priyank Kumar Singh, Saikat Gochhait i Shubham Kumar. "Explainable AI (XAI) for Green AI-Powered Disease Prognosis". W Advances in Medical Diagnosis, Treatment, and Care, 141–60. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1243-8.ch008.
Pełny tekst źródłaDehankar, Pooja, i Susanta Das. "Detection of Heart Disease Using ANN". W Future of AI in Biomedicine and Biotechnology, 182–96. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3629-8.ch009.
Pełny tekst źródłaBiswas, Neepa, Debarpita Santra, Bannishikha Banerjee i Sudarsan Biswas. "Harnessing the Power of Machine Learning for Parkinson's Disease Detection". W AIoT and Smart Sensing Technologies for Smart Devices, 140–55. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0786-1.ch008.
Pełny tekst źródłaTripathi, Rati Kailash Prasad, i Shrikant Tiwari. "Unravelling the Enigma of Machine Learning Model Interpretability in Enhancing Disease Prediction". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 125–53. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8531-6.ch007.
Pełny tekst źródłaKrishna Pasupuleti, Murali. "AI-Driven Mutation Detection: Transforming Genomic Data into Insights for Disease Prediction". W AI in Genomic Data Analysis: Identifying Disease-Causing Mutations, 1–28. National Education Services, 2024. http://dx.doi.org/10.62311/nesx/46694.
Pełny tekst źródłaTafadzwa Mpofu, Kelvin, i Patience Mthunzi-Kufa. "Recent Advances in Artificial Intelligence and Machine Learning Based Biosensing Technologies". W Current Developments in Biosensor Applications and Smart Strategies [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1009613.
Pełny tekst źródłaSharma, Ajay, Devendra Babu Pesarlanka i Shamneesh Sharma. "Harnessing Machine Learning and Deep Learning in Healthcare From Early Diagnosis to Personalized Treatment". W Advances in Healthcare Information Systems and Administration, 369–98. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-7277-7.ch012.
Pełny tekst źródłaRaj, Sundeep, Arun Prakash Agarwal, Sandesh Tripathi i Nidhi Gupta. "Prediction and Analysis of Digital Health Records, Geonomics, and Radiology Using Machine Learning". W Prediction in Medicine: The Impact of Machine Learning on Healthcare, 24–43. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815305128124010005.
Pełny tekst źródła