Artykuły w czasopismach na temat „Ion multivalent”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ion multivalent”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Proffit, Danielle L., Albert L. Lipson, Baofei Pan, et al. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells." MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Pełny tekst źródłaPalacin, M. Rosa, Patrik Johansson, Robert Dominko, et al. "Roadmap on Multivalent Batteries." JPhys Energy 6, no. 3 (2024): 031501. https://doi.org/10.1088/2515-7655/ad34fc.
Pełny tekst źródłaGreene, Samuel M., and Donald J. Siegel. "Computational Investigations of Features for Predicting Ionic Conductivity in Multivalent Solid Electrolytes." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1428. https://doi.org/10.1149/ma2024-0291428mtgabs.
Pełny tekst źródłaRutt, Ann, and Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Pełny tekst źródłaIton, Zachery W. B., and Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids." Chemistry of Materials 34, no. 3 (2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Pełny tekst źródłaDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu, and Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors." Journal of Materials Chemistry A 7, no. 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Pełny tekst źródłaSchauser, Nicole S., Ram Seshadri, and Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems." Molecular Systems Design & Engineering 4, no. 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Pełny tekst źródłaGates, Leslie, and Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System." ECS Meeting Abstracts MA2023-01, no. 1 (2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Pełny tekst źródłaLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu, and Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification." Journal of Physical Chemistry C 123, no. 22 (2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Pełny tekst źródłaHasnat, Abul, and Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations." Chemical Engineering Science 52, no. 14 (1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Pełny tekst źródłaKC, Bilash, Jinglong Guo, Robert Klie, et al. "TEM Analysis of Multivalent Ion Battery Cathode." Microscopy and Microanalysis 26, S2 (2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Pełny tekst źródłaImanaka, Nobuhito, and Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes." Bulletin of the Chemical Society of Japan 84, no. 4 (2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Pełny tekst źródłaKim, Chaewon, Useul Hwang, Sangjin Lee, and Young-Kyu Han. "First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries." Nanomaterials 13, no. 21 (2023): 2868. http://dx.doi.org/10.3390/nano13212868.
Pełny tekst źródłaWang, Bangda, Natsume Koike, Kenta Iyoki, et al. "Insights into the ion-exchange properties of Zn(ii)-incorporated MOR zeolites for the capture of multivalent cations." Physical Chemistry Chemical Physics 21, no. 7 (2019): 4015–21. http://dx.doi.org/10.1039/c8cp06975a.
Pełny tekst źródłaIslam, Shakirul M., Ryan J. Malone, Wenlong Yang, et al. "Nanographene Cathode Materials for Nonaqueous Zn-Ion Batteries." Journal of The Electrochemical Society 169, no. 11 (2022): 110517. http://dx.doi.org/10.1149/1945-7111/ac9f72.
Pełny tekst źródłaJing, Benxin, Jie Qiu, and Yingxi Zhu. "Organic–inorganic macroion coacervate complexation." Soft Matter 13, no. 28 (2017): 4881–89. http://dx.doi.org/10.1039/c7sm00955k.
Pełny tekst źródłaLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing, and Dan J. L. Brett. "Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021)." Advanced Functional Materials 31, no. 13 (2021): 2170089. http://dx.doi.org/10.1002/adfm.202170089.
Pełny tekst źródłaNaughton, Elise M., Mingqiang Zhang, Diego Troya, Karen J. Brewer, and Robert B. Moore. "Size dependent ion-exchange of large mixed-metal complexes into Nafion® membranes." Polymer Chemistry 6, no. 38 (2015): 6870–79. http://dx.doi.org/10.1039/c5py00714c.
Pełny tekst źródłaBesha, Abreham Tesfaye, Misgina Tilahun Tsehaye, David Aili, Wenjuan Zhang, and Ramato Ashu Tufa. "Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis." Membranes 10, no. 1 (2019): 7. http://dx.doi.org/10.3390/membranes10010007.
Pełny tekst źródłaDai, Fangfang, Risheng Yu, Ruobing Yi, et al. "Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection." Chemical Communications 56, no. 95 (2020): 15068–71. http://dx.doi.org/10.1039/d0cc06302a.
Pełny tekst źródłaMa, Xinpei, Junye Cheng, Liubing Dong, et al. "Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors." Energy Storage Materials 20 (July 2019): 335–42. http://dx.doi.org/10.1016/j.ensm.2018.10.020.
Pełny tekst źródłaLi, Matthew, Jun Lu, Xiulei Ji, et al. "Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes." Nature Reviews Materials 5, no. 4 (2020): 276–94. http://dx.doi.org/10.1038/s41578-019-0166-4.
Pełny tekst źródłaMa, Lin, Marshall Schroeder, Glenn Pastel, et al. "(Invited) Promises and Challenges of Multivalent Ion Battery Chemistries." ECS Meeting Abstracts MA2022-02, no. 5 (2022): 552. http://dx.doi.org/10.1149/ma2022-025552mtgabs.
Pełny tekst źródłaSrivastava, Sunita, Anuj Chhabra, and Oleg Gang. "Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA." Soft Matter 18, no. 3 (2022): 526–34. http://dx.doi.org/10.1039/d1sm01171e.
Pełny tekst źródłaLužanin, Olivera, Jože Moškon, Tjaša Pavčnik, Robert Dominko, and Jan Bitenc. "Unveiling True Limits of Electrochemical Performance of Organic Cathodes in Multivalent Batteries through Cyclable Symmetric Cells." Batteries & Supercaps 6, no. 2 (2022): e202200437. https://doi.org/10.1002/batt.202200437.
Pełny tekst źródłaPark, Haesun, and Peter Zapol. "Thermodynamic and kinetic properties of layered-CaCo2O4 for the Ca-ion batteries: a systematic first-principles study." Journal of Materials Chemistry A 8, no. 41 (2020): 21700–21710. http://dx.doi.org/10.1039/d0ta07573f.
Pełny tekst źródłaKim, Kwangnam, and Donald J. Siegel. "Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes." Chemistry of Materials 33, no. 6 (2021): 2187–97. http://dx.doi.org/10.1021/acs.chemmater.1c00096.
Pełny tekst źródłaLiu, Chaofeng. "Aqueous Multivalent Ion Batteries Built on Hydrated Vanadates." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 226. http://dx.doi.org/10.1149/ma2020-012226mtgabs.
Pełny tekst źródłaPark, Min Je, Hooman Yaghoobnejad Asl, and Arumugam Manthiram. "Multivalent-Ion versus Proton Insertion into Battery Electrodes." ACS Energy Letters 5, no. 7 (2020): 2367–75. http://dx.doi.org/10.1021/acsenergylett.0c01021.
Pełny tekst źródłaQuinn, J. F., and F. Caruso. "Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers." Advanced Functional Materials 16, no. 9 (2006): 1179–86. http://dx.doi.org/10.1002/adfm.200500530.
Pełny tekst źródłaWang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu, and Zhongxue Chen. "MXene-Based Materials for Multivalent Metal-Ion Batteries." Batteries 9, no. 3 (2023): 174. http://dx.doi.org/10.3390/batteries9030174.
Pełny tekst źródłaDai, Fangfang, Feng Zhou, Junlang Chen, Shanshan Liang, Liang Chen, and Haiping Fang. "Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes." Journal of Materials Chemistry A 9, no. 17 (2021): 10672–77. http://dx.doi.org/10.1039/d1ta00647a.
Pełny tekst źródłaYao, Long, Shunlong Ju, and Xuebin Yu. "Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries." Journal of Materials Chemistry A 9, no. 31 (2021): 16878–88. http://dx.doi.org/10.1039/d1ta03465k.
Pełny tekst źródłaZhang, Jiaxu, Xiang Wang, Jing Lv, Dong-Sheng Li, and Tao Wu. "A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose." Chemical Communications 55, no. 45 (2019): 6357–60. http://dx.doi.org/10.1039/c9cc02905b.
Pełny tekst źródłaChen, Mei, Jinxing Ma, Zhiwei Wang, Xingran Zhang, and Zhichao Wu. "Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring." RSC Advances 7, no. 58 (2017): 36555–61. http://dx.doi.org/10.1039/c7ra05510b.
Pełny tekst źródłaPavlovic, Marko, Robin Huber, Monika Adok-Sipiczki, Corinne Nardin, and Istvan Szilagyi. "Ion specific effects on the stability of layered double hydroxide colloids." Soft Matter 12, no. 17 (2016): 4024–33. http://dx.doi.org/10.1039/c5sm03023d.
Pełny tekst źródłaLiu, Yi, and Rudolf Holze. "Metal-Ion Batteries." Encyclopedia 2, no. 3 (2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.
Pełny tekst źródłaLiu, Zhexuan, Liping Qin, Xinxin Cao, et al. "Ion migration and defect effect of electrode materials in multivalent-ion batteries." Progress in Materials Science 125 (April 2022): 100911. http://dx.doi.org/10.1016/j.pmatsci.2021.100911.
Pełny tekst źródłaIzdebska, Natalia, Klaudia Kierepka, Maciej Marczewski, and Wladyslaw Wieczorek. "Bivalent Metal-Organic Batteries: Optimisation of Electrolytes By Next-Generation Additives." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1412. https://doi.org/10.1149/ma2024-0291412mtgabs.
Pełny tekst źródłaKarapidakis, Emmanuel, and Dimitra Vernardou. "Progress on V2O5 Cathodes for Multivalent Aqueous Batteries." Materials 14, no. 9 (2021): 2310. http://dx.doi.org/10.3390/ma14092310.
Pełny tekst źródłaLi, Yuqi, Yaxiang Lu, Philipp Adelhelm, Maria-Magdalena Titirici, and Yong-Sheng Hu. "Intercalation chemistry of graphite: alkali metal ions and beyond." Chemical Society Reviews 48, no. 17 (2019): 4655–87. http://dx.doi.org/10.1039/c9cs00162j.
Pełny tekst źródłaHao, Qing-Hai, Qian Chen, Zhen Zheng, et al. "Molecular dynamics simulations of cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions." Journal of Theoretical and Computational Chemistry 15, no. 03 (2016): 1650026. http://dx.doi.org/10.1142/s0219633616500267.
Pełny tekst źródłaGao, Qiang, Jeremy Come, Michael Naguib, Stephen Jesse, Yury Gogotsi, and Nina Balke. "Synergetic effects of K+and Mg2+ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2MXene." Faraday Discussions 199 (2017): 393–403. http://dx.doi.org/10.1039/c6fd00251j.
Pełny tekst źródłaLi, Le, Weizhuo Zhang, Weijie Pan, et al. "Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions." Nanoscale 13, no. 46 (2021): 19291–305. http://dx.doi.org/10.1039/d1nr05873h.
Pełny tekst źródłaStadie, Nicholas P. "(Invited) Zeolite-Templated Carbon As a Model Material for Electrochemical Energy Storage in Nanometre-Spaced Carbon Channels." ECS Meeting Abstracts MA2022-01, no. 7 (2022): 659. http://dx.doi.org/10.1149/ma2022-017659mtgabs.
Pełny tekst źródłaFu, Wangqin, Marliyana Aizudin, Pooi See Lee, and Edison Huixiang Ang. "Recent Progress in the Applications of MXene‐Based Materials in Multivalent Ion Batteries." Small, August 13, 2024. http://dx.doi.org/10.1002/smll.202404093.
Pełny tekst źródłaXu, Zikang, Ruiqi Ren, Hang Ren, et al. "Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries." Frontiers of Optoelectronics 16, no. 1 (2023). http://dx.doi.org/10.1007/s12200-023-00093-0.
Pełny tekst źródłaGuo, Juchen, Jennifer L. Schaefer, and Yuyan Shao. "Rechargeable Multivalent-Ion Batteries." Energy Material Advances, July 8, 2024. http://dx.doi.org/10.34133/energymatadv.0112.
Pełny tekst źródłaTong, Zhongqiu, Xing Zhu, Hongbo Xu, et al. "Multivalent‐Ion Electrochromic Energy Saving and Storage Devices." Advanced Functional Materials, January 4, 2024. http://dx.doi.org/10.1002/adfm.202308989.
Pełny tekst źródłaTang, Xiao, Dong Zhou, Bao Zhang, et al. "A universal strategy towards high–energy aqueous multivalent–ion batteries." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-23209-6.
Pełny tekst źródła