Artykuły w czasopismach na temat „Iron oxide microparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Iron oxide microparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bica, Ioan, Eugen Mircea Anitas, Hyoung Jin Choi, and Paula Sfirloaga. "Microwave-assisted synthesis and characterization of iron oxide microfibers." Journal of Materials Chemistry C 8, no. 18 (2020): 6159–67. http://dx.doi.org/10.1039/c9tc05687d.
Pełny tekst źródłaCarrelo, Henrique, André R. Escoval, Tânia Vieira, et al. "Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications." Gels 9, no. 12 (2023): 982. http://dx.doi.org/10.3390/gels9120982.
Pełny tekst źródłaKrajewski, M., K. Brzozka, W. S. Lin, et al. "High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles." Physical Chemistry Chemical Physics 18, no. 5 (2016): 3900–3909. http://dx.doi.org/10.1039/c5cp07569f.
Pełny tekst źródłaBharathy, Pavithra, Silpa Jayaprakash, Allen Christopher M, Rajini prem G, and Punniyakoti Veeraveedu Thanikachalam. "Characterization and cytotoxicity evaluation of Ixora coccinea-derived iron oxide microparticles for biomedical applications." Journal of Applied Pharmaceutical Research 13, no. 1 (2025): 179–90. https://doi.org/10.69857/joapr.v13i1.870.
Pełny tekst źródłaKoudelkova, Zuzana, Zuzana Bytesnikova, Kledi Xhaxhiu, et al. "Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide." Molecules 24, no. 6 (2019): 1063. http://dx.doi.org/10.3390/molecules24061063.
Pełny tekst źródłaKusrini, Eny, Khairu Nuzula, Anwar Usman, Lee D. Wilson, Cindy Gunawan, and Agus Budi Prasetyo. "Enhanced Cytotoxicity and Antifungal Effects of Iron-Oxide Chitosan/Samarium/Ranitidine Microparticles." Sains Malaysiana 54, no. 1 (2025): 3673–86. https://doi.org/10.17576/jsm-2025-5401-17.
Pełny tekst źródłaŽaimis, Uldis, Jūratė Jolanta Petronienė, Andrius Dzedzickis, and Vytautas Bučinskas. "Stretch Sensor: Development of Biodegradable Film." Sensors 24, no. 2 (2024): 683. http://dx.doi.org/10.3390/s24020683.
Pełny tekst źródłaKabiri, Shervin, Mahaveer D. Kurkuri, Tushar Kumeria, and Dusan Losic. "Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection." RSC Adv. 4, no. 29 (2014): 15276–80. http://dx.doi.org/10.1039/c4ra01393j.
Pełny tekst źródłaMatsunaga, H., M. Kiguchi, B. Roth, and P. D. Evans. "Visualisation of Metals in Pine Treated with Preservative Containing Copper and Iron Nanoparticles." IAWA Journal 29, no. 4 (2008): 387–96. http://dx.doi.org/10.1163/22941932-90000193.
Pełny tekst źródłaTronc, E., and D. Bonnin. "Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy." Journal de Physique Lettres 46, no. 10 (1985): 437–43. http://dx.doi.org/10.1051/jphyslet:019850046010043700.
Pełny tekst źródłaRodríguez, Cristian F., Paula Guzmán-Sastoque, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma, and Juan C. Cruz. "Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA." Micromachines 15, no. 8 (2024): 1057. http://dx.doi.org/10.3390/mi15081057.
Pełny tekst źródłaHavelka, Ondřej, Martin Cvek, Michal Urbánek, et al. "On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments." Nanomaterials 11, no. 6 (2021): 1538. http://dx.doi.org/10.3390/nano11061538.
Pełny tekst źródłaKnoche Gupta, Krysti, Heung Chan Lee, Joshua Richard Coduto, and Johna Leddy. "(Invited) Glassy Carbon Electrodes Modified with Micromagnets: Magnetoelectrocatalysis of HER." ECS Meeting Abstracts MA2022-02, no. 30 (2022): 1112. http://dx.doi.org/10.1149/ma2022-02301112mtgabs.
Pełny tekst źródłaRafieepour, Athena, Mansour R. Azari, Habibollah Peirovi, et al. "Investigation of the effect of magnetite iron oxide particles size on cytotoxicity in A549 cell line." Toxicology and Industrial Health 35, no. 11-12 (2019): 703–13. http://dx.doi.org/10.1177/0748233719888077.
Pełny tekst źródłaAmara, Daniel, and Shlomo Margel. "Synthesis and characterization of elemental iron and iron oxide nano/microcomposite particles by thermal decomposition of ferrocene." Nanotechnology Reviews 2, no. 3 (2013): 333–57. http://dx.doi.org/10.1515/ntrev-2012-0061.
Pełny tekst źródłaMel’nikov, G. Yu, L. M. Ranero, A. P. Safronov, A. Larrañaga, A. V. Svalov, and G. V. Kurlyandskaya. "Epoxy Composites with Iron Oxide Microparticles: Model Materials for Magnetic Detection." Physics of Metals and Metallography 123, no. 11 (2022): 1075–83. http://dx.doi.org/10.1134/s0031918x22601330.
Pełny tekst źródłaDalzon, Torres, Reymond, et al. "Influences of Nanoparticles Characteristics on the Cellular Responses: The Example of Iron Oxide and Macrophages." Nanomaterials 10, no. 2 (2020): 266. http://dx.doi.org/10.3390/nano10020266.
Pełny tekst źródłaDresvyannikov, A. F., L. E. Kalugin, M. M. Mironov, and M. F. Shaekhov. "Influence of plasma high-frequency induction discharge on the physical and chemical properties of the Ti – Fe – Ni dispersed system obtained by the electrochemical method." Physics and Chemistry of Materials Treatment 4 (2022): 15–22. http://dx.doi.org/10.30791/0015-3214-2022-4-15-22.
Pełny tekst źródłaThébault, C., M. Marmiesse, C. Naud, et al. "Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis." Nanoscale Advances 3, no. 21 (2021): 6213–22. http://dx.doi.org/10.1039/d1na00461a.
Pełny tekst źródłaPipíška, Martin, Simona Zarodňanská, Miroslav Horník, Libor Ďuriška, Marián Holub, and Ivo Šafařík. "Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal." Materials 13, no. 16 (2020): 3619. http://dx.doi.org/10.3390/ma13163619.
Pełny tekst źródłaMedina, Christian D., Leonardo A. F. Mendoza, Cleânio Luz-Lima, Antonio C. Bruno, and Jefferson F. D. F. Araujo. "Measuring Iron Oxide Composites with a Custom-Made Scanning Magnetic Microscope." Sensors 25, no. 8 (2025): 2594. https://doi.org/10.3390/s25082594.
Pełny tekst źródłaSMIRNOV, V. M., G. P. VORONKOV, V. G. SEMENOV, V. G. POVAROV, and I. V. MURIN. "MÖSSBAUER STUDY OF STRUCTURAL–CHEMICAL TRANSFORMATION IN TWO-DIMENSIONAL IRON–OXYGEN NANOSTRUCTURES IN THE COURSE OF TRANSPORT REDUCTION." Surface Review and Letters 07, no. 01n02 (2000): 1–6. http://dx.doi.org/10.1142/s0218625x00000026.
Pełny tekst źródłaChistè, Elena, Gloria Ischia, Marco Gerosa, Pasquina Marzola, Marina Scarpa, and Nicola Daldosso. "Porous Si Microparticles Infiltrated with Magnetic Nanospheres." Nanomaterials 10, no. 3 (2020): 463. http://dx.doi.org/10.3390/nano10030463.
Pełny tekst źródłaPospiskova, K., G. Prochazkova, and I. Safarik. "One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles." Letters in Applied Microbiology 56, no. 6 (2013): 456–61. http://dx.doi.org/10.1111/lam.12069.
Pełny tekst źródłaMöller, Winfried, Gerhard Scheuch, Knut Sommerer та Joachim Heyder. "Preparation of spherical monodisperse ferrimagnetic iron-oxide microparticles between 1 and 5μm diameter". Journal of Magnetism and Magnetic Materials 225, № 1-2 (2001): 8–16. http://dx.doi.org/10.1016/s0304-8853(00)01221-x.
Pełny tekst źródłaKatsnelson, Boris A., Larisa I. Privalova, Sergey V. Kuzmin, et al. "An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4." ISRN Nanotechnology 2012 (August 7, 2012): 1–12. http://dx.doi.org/10.5402/2012/143613.
Pełny tekst źródłaOliveira, João Pedro Jenson de, Acelino Cardoso de Sá, and Leonardo Lataro Paim. "Electrocatalysis of Ethanol and Methanol Electrooxidation by Composite Electrodes with NiOOH/FeOOH Supported on Reduced Graphene Oxide onto Composite Electrodes." Chemistry Proceedings 2, no. 1 (2020): 2. http://dx.doi.org/10.3390/eccs2020-07523.
Pełny tekst źródłaDolmatov, Arthur V., Sergey S. Maklakov, Anastasia V. Artemova, Dmitry A. Petrov, Artem O. Shiryaev, and Andrey N. Lagarkov. "Deposition of Thick SiO2 Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance." Sensors 23, no. 3 (2023): 1727. http://dx.doi.org/10.3390/s23031727.
Pełny tekst źródłaMurashova, Nataliya M., Ayuna A. Dambieva, and Evgeniy V. Yurtov. "EFFECT OF NANO- AND MICROPARTICLES OF IRON (III) OXIDE ON VISCOSITY OF LAMELLAR LIQUID CRYSTALS OF LECITHIN." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 5 (2018): 41. http://dx.doi.org/10.6060/tcct.20165905.5330.
Pełny tekst źródłaMcAteer, Martina A., Nicola R. Sibson, Constantin von zur Muhlen, et al. "In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide." Nature Medicine 13, no. 10 (2007): 1253–58. http://dx.doi.org/10.1038/nm1631.
Pełny tekst źródłaZhu, Yeqing, You Ling, Jinglian Zhong, Xueguo Liu, Kun Wei, and Suiqiao Huang. "Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide." Acta Radiologica 53, no. 7 (2012): 812–19. http://dx.doi.org/10.1258/ar.2012.120040.
Pełny tekst źródłaXu, Chenjie, David Miranda-Nieves, James A. Ankrum, et al. "Tracking Mesenchymal Stem Cells with Iron Oxide Nanoparticle Loaded Poly(lactide-co-glycolide) Microparticles." Nano Letters 12, no. 8 (2012): 4131–39. http://dx.doi.org/10.1021/nl301658q.
Pełny tekst źródłaYan, Fei, Wei Yang, Xiang Li, et al. "Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice." BioMed Research International 2015 (July 21, 2015): 1–10. http://dx.doi.org/10.1155/2015/758616.
Pełny tekst źródłaReibenspies, Joseph H., and Nattamai Bhuvanesh. "X-ray powder diffraction characterization of iron microparticles on a Bruker SMART1000 single-crystal X-ray diffractometer." Powder Diffraction 24, no. 4 (2009): 347–50. http://dx.doi.org/10.1154/1.3257614.
Pełny tekst źródłaKothari, Manisha S., Ashraf Aly Hassan, and Kosha A. Shah. "Three-Dimensional Electrochemical Oxidation of Recalcitrant Dye Using Green Iron Microparticles." Water 13, no. 14 (2021): 1925. http://dx.doi.org/10.3390/w13141925.
Pełny tekst źródłaThayse, Kathleen, Nadège Kindt, Sophie Laurent, and Stéphane Carlier. "VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques." Biology 9, no. 11 (2020): 368. http://dx.doi.org/10.3390/biology9110368.
Pełny tekst źródłaBai, Meng-Yi, Mu-Hsien Yu, Ting-Teng Wang, Shiu-Hsin Chen, and Yu-Chi Wang. "Plate-like Alginate Microparticles with Disulfiram–SPIO–Coencapsulation: An In Vivo Study for Combined Therapy on Ovarian Cancer." Pharmaceutics 13, no. 9 (2021): 1348. http://dx.doi.org/10.3390/pharmaceutics13091348.
Pełny tekst źródłaAraújo, Jefferson F. D. F., João M. B. Pereira, and Antônio C. Bruno. "Assembling a magnetometer for measuring the magnetic propertiesof iron oxide microparticles in the classroom laboratory." American Journal of Physics 87, no. 6 (2019): 471–75. http://dx.doi.org/10.1119/1.5100944.
Pełny tekst źródłaWassel, Ronald A., Brian Grady, Richard D. Kopke, and Kenneth J. Dormer. "Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, no. 2-3 (2007): 125–30. http://dx.doi.org/10.1016/j.colsurfa.2006.06.012.
Pełny tekst źródłaMöller, Winfried Barth, Martin Kohl, Winfried. "HUMAN ALVEOLAR LONG-TERM CLEARANCE OF FERROMAGNETIC IRON OXIDE MICROPARTICLES IN HEALTHY AND DISEASED SUBJECTS." Experimental Lung Research 27, no. 7 (2001): 547–68. http://dx.doi.org/10.1080/019021401753181827.
Pełny tekst źródłaTewes, Frederic, Carsten Ehrhardt, and Anne Marie Healy. "Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung." European Journal of Pharmaceutics and Biopharmaceutics 86, no. 1 (2014): 98–104. http://dx.doi.org/10.1016/j.ejpb.2013.09.004.
Pełny tekst źródłaYassine, O., E. Q. Li, A. Alfadhel, et al. "Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery." International Journal of Polymer Science 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/1219469.
Pełny tekst źródłaKról, Jarosƚaw E., and Garth D. Ehrlich. "Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms." Microorganisms 11, no. 6 (2023): 1515. http://dx.doi.org/10.3390/microorganisms11061515.
Pełny tekst źródłaМельников, Г. Ю., В. Н. Лепаловский та Г. В. Курляндская. "Магнитный импеданс пленочных наноструктур для оценки полей рассеяния микрочастиц магнитных композитов". Журнал технической физики 92, № 2 (2022): 321. http://dx.doi.org/10.21883/jtf.2022.02.52024.259-21.
Pełny tekst źródłaМельников, Г. Ю., В. Н. Лепаловский, А. П. Сафронов та ін. "Магнитные композиты на основе эпоксидной смолы с магнитными микро- и наночастицами оксида железа: фокус на магнитное детектирование". Физика твердого тела 65, № 7 (2023): 1100. http://dx.doi.org/10.21883/ftt.2023.07.55829.22h.
Pełny tekst źródłaRatajczak, Filip, Bassam Jameel, Rafał Bielas, and Arkadiusz Józefczak. "Ultrasound Control of Pickering Emulsion-Based Capsule Preparation." Sensors 24, no. 17 (2024): 5710. http://dx.doi.org/10.3390/s24175710.
Pełny tekst źródłaMelnikov G. Yu., Lepalovskij V. N., and Kurlyandskaya G. V. "Magnetic impedance of film nanostructures for stray magnetic field evaluation of microparticles in magnetic composites." Technical Physics 92, no. 2 (2022): 266. http://dx.doi.org/10.21883/tp.2022.02.52958.259-21.
Pełny tekst źródłaDinislamova, Olga A., Antonina V. Bugayova, Tatyana F. Shklyar, Alexander P. Safronov, and Felix A. Blyakhman. "Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles." Bioengineering 8, no. 10 (2021): 140. http://dx.doi.org/10.3390/bioengineering8100140.
Pełny tekst źródłaYan, Fei, Wei Yang, Xiang Li, et al. "Erratum to “Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice”." BioMed Research International 2018 (October 18, 2018): 1–2. http://dx.doi.org/10.1155/2018/8093438.
Pełny tekst źródłaAl Faraj, Achraf, Florence Gazeau, Claire Wilhelm, et al. "Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice." Radiology 263, no. 1 (2012): 169–78. http://dx.doi.org/10.1148/radiol.11111329.
Pełny tekst źródła