Spis treści
Gotowa bibliografia na temat „IRSA-NOMA”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „IRSA-NOMA”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "IRSA-NOMA"
PAMUKTI, BRIAN, NACHWAN MUFTI ADRIANSYAH i REYVALDO FAHREZY NILADBRATA. "Evaluasi Coded Random Access untuk Visible Light Communication pada Model Kanal Non-Line Of Sight". ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 10, nr 2 (12.04.2022): 405. http://dx.doi.org/10.26760/elkomika.v10i2.405.
Pełny tekst źródłaBabich, Fulvio, Giulia Buttazzoni, Francesca Vatta i Massimiliano Comisso. "Energy-Constrained Design of Joint NOMA-Diversity Schemes with Imperfect Interference Cancellation". Sensors 21, nr 12 (18.06.2021): 4194. http://dx.doi.org/10.3390/s21124194.
Pełny tekst źródłaQin, Sihao, Guangliang Ren, Yuxuan He i Dandan Guan. "Spatial Group Based NOMA-IRSA with Adaptive Degree Distribution in IoT-Enabled WSNs". IEEE Sensors Journal, 2024, 1. http://dx.doi.org/10.1109/jsen.2024.3465233.
Pełny tekst źródłaRamatryana, I. Nyoman Apraz, Gandeva Bayu Satrya i Soo Young Shin. "Adaptive Traffic Load in IRSA-NOMA Prioritizing Emergency Devices for 6G Enabled Massive IoT". IEEE Wireless Communications Letters, 2021, 1. http://dx.doi.org/10.1109/lwc.2021.3113048.
Pełny tekst źródłaRozprawy doktorskie na temat "IRSA-NOMA"
Oueslati, Ibtissem. "Algorithmes d'accès massif pour les objets connectés". Electronic Thesis or Diss., Limoges, 2025. http://www.theses.fr/2025LIMO0021.
Pełny tekst źródłaThe rapid evolution of wireless communication technologies has led to new challenges in supporting massive device connectivity while ensuring reliable and low-latency communication. Fifth Generation Mobile Radio (5G) networks have introduced diverse service use cases, including Massive Machine-Type Communications (mMTC) and Ultra-Reliable Low-Latency Communications (URLLC). However, as we transition to- ward the Sixth Generation Mobile Communication (6G), the increasing complexity of network requirements is expected to drive the emergence of new use cases beyond those previously defined in 5G. One such use case requires the integration of both mMTC and URLLC capabilities, giving rise to Massive Ultra-Reliable Low-Latency Communications (mURLLC), a service category that combines the massive access demands of mMTC with the stringent latency and reliability constraints of URLLC. Meeting the requirements of mMTC and mURLLC, which not only demands massive access but also demands stringent low-latency and high-reliability constraints, is a is a complex task. This necessitates efficient resource allocation frameworks. The research journey begins with an introductory overview of the evolution of wire- less networks, focusing on the fundamental requirements of mMTC and mURLLC. It highlights the challenges posed by massive access and the stringent constraints of low latency and high reliability, emphasizing the need for using strong key enablers. Subsequently, the thesis delves into the enabling technologies used to address these challenges, particularly Non-Orthogonal Multiple Access (NOMA) and Grant-Free (GF) access. Additionally, the role of Reinforcement Learning (RL) in dynamic resource allocation is examined.This thesis also explores the potential of Irregular Repetition Slotted ALOHA (IRSA) as a key enabler for achieving the stringent requirements of mURLLC, especially when combined with NOMA ( Irregular Repetition Slotted ALOHA with Non-Orthogonal Multiple Access (IRSA-NOMA)). The core of this thesis focuses on developing novel resource allocation frameworks to address massive access challenges, particularly targeting the requirements of both mMTC and mURLLC. The first major contribution of this thesis is the development of a novel GF-NOMA resource allocation technique specifically designed for mMTC. This framework, named LoCoNOMA, enables Machine-Type Devices (MTDs) to au- tonomously select power levels and sub-carriers while relying only on global feedback from the Next Generation Node B (gNB). An analytical upper bound for the packet success rate was derived, and its accuracy was validated by comparing it with simulation results. We numerically demonstrate that the proposed framework outperforms existing techniques in terms of packet success rate, energy consumption, and transmission delay. Building upon the LoCoNOMA framework, which demonstrated effectiveness in massive access for mMTC, the second contribution extends it to address not only massive access but also the stringent latency and reliability requirements of mURLLC by incorporating Q-Learning. We introduce a distributed multi-agent Q-Learning framework, referred to as QL-GF-NOMA, that prioritizes minimizing delay through a novel objective function. To further enhance the framework and balance both latency and reliability, we extend it further to develop a new framework, QL-IRSA-NOMA, by integrating IRSA-NOMA due to its robustness in mitigating packet collisions. Additionally, we redefine the Q-Learning objective function to jointly address latency and reliability constraints. The framework dynamically adjusts IRSA-NOMA’s degree distribution, ensuring optimal performance under mURLLC requirements. Simulation results demonstrate that the proposed framework outperforms existing techniques in terms of reliability, low latency, and energy consumption