Gotowa bibliografia na temat „Iterative methods (Mathematics)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Iterative methods (Mathematics)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Iterative methods (Mathematics)"

1

Rafiq, Arif, Sifat Hussain, Farooq Ahmad, and Muhammad Awais. "New iterative methods." Applied Mathematics and Computation 189, no. 2 (June 2007): 1260–67. http://dx.doi.org/10.1016/j.amc.2006.12.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Beauwens, Robert. "Iterative solution methods." Applied Numerical Mathematics 51, no. 4 (December 2004): 437–50. http://dx.doi.org/10.1016/j.apnum.2004.06.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lin, R. F., H. M. Ren, Z. Šmarda, Q. B. Wu, Y. Khan, and J. L. Hu. "New Families of Third-Order Iterative Methods for Finding Multiple Roots." Journal of Applied Mathematics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/812072.

Pełny tekst źródła
Streszczenie:
Two families of third-order iterative methods for finding multiple roots of nonlinear equations are developed in this paper. Mild conditions are given to assure the cubic convergence of two iteration schemes (I) and (II). The presented families include many third-order methods for finding multiple roots, such as the known Dong's methods and Neta's method. Some new concrete iterative methods are provided. Each member of the two families requires two evaluations of the function and one of its first derivative per iteration. All these methods require the knowledge of the multiplicity. The obtaine
Style APA, Harvard, Vancouver, ISO itp.
4

Geiser, Jürgen. "Computing Exponential for Iterative Splitting Methods: Algorithms and Applications." Journal of Applied Mathematics 2011 (2011): 1–27. http://dx.doi.org/10.1155/2011/193781.

Pełny tekst źródła
Streszczenie:
Iterative splitting methods have a huge amount to compute matrix exponential. Here, the acceleration and recovering of higher-order schemes can be achieved. From a theoretical point of view, iterative splitting methods are at least alternating Picards fix-point iteration schemes. For practical applications, it is important to compute very fast matrix exponentials. In this paper, we concentrate on developing fast algorithms to solve the iterative splitting scheme. First, we reformulate the iterative splitting scheme into an integral notation of matrix exponential. In this notation, we consider
Style APA, Harvard, Vancouver, ISO itp.
5

Khattri, S. K., and R. P. Agarwal. "Derivative-Free Optimal Iterative Methods." Computational Methods in Applied Mathematics 10, no. 4 (2010): 368–75. http://dx.doi.org/10.2478/cmam-2010-0022.

Pełny tekst źródła
Streszczenie:
AbstractIn this study, we develop an optimal family of derivative-free iterative methods. Convergence analysis shows that the methods are fourth order convergent, which is also verified numerically. The methods require three functional evaluations during each iteration. Though the methods are independent of derivatives, computa- tional results demonstrate that the family of methods are efficient and demonstrate equal or better performance as compared with many well-known methods and the clas- sical Newton method. Through optimization we derive an optimal value for the free parameter and implem
Style APA, Harvard, Vancouver, ISO itp.
6

Proinov, Petko D., and Maria T. Vasileva. "A New Family of High-Order Ehrlich-Type Iterative Methods." Mathematics 9, no. 16 (August 5, 2021): 1855. http://dx.doi.org/10.3390/math9161855.

Pełny tekst źródła
Streszczenie:
One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (wit
Style APA, Harvard, Vancouver, ISO itp.
7

Vabishchevich, Petr N. "Iterative Methods for Solving Convection-diffusion Problem." Computational Methods in Applied Mathematics 2, no. 4 (2002): 410–44. http://dx.doi.org/10.2478/cmam-2002-0023.

Pełny tekst źródła
Streszczenie:
AbstractTo obtain an approximate solution of the steady-state convectiondiffusion problem, it is necessary to solve the corresponding system of linear algebraic equations. The basic peculiarity of these LA systems is connected with the fact that they have non-symmetric matrices. We discuss the questions of approximate solution of 2D convection-diffusion problems on the basis of two- and three-level iterative methods. The general theory of iterative methods of solving grid equations is used to present the material of the paper. The basic problems of constructing grid approximations for steady-s
Style APA, Harvard, Vancouver, ISO itp.
8

Bai, Zhong-Zhi. "Regularized HSS iteration methods for stabilized saddle-point problems." IMA Journal of Numerical Analysis 39, no. 4 (July 31, 2018): 1888–923. http://dx.doi.org/10.1093/imanum/dry046.

Pełny tekst źródła
Streszczenie:
Abstract We extend the regularized Hermitian and skew-Hermitian splitting (RHSS) iteration methods for standard saddle-point problems to stabilized saddle-point problems and establish the corresponding unconditional convergence theory for the resulting methods. Besides being used as stationary iterative solvers, this class of RHSS methods can also be used as preconditioners for Krylov subspace methods. It is shown that the eigenvalues of the corresponding preconditioned matrix are clustered at a small number of points in the interval $(0, \, 2)$ when the iteration parameter is close to $0$ and
Style APA, Harvard, Vancouver, ISO itp.
9

Javidi, M. "Iterative methods to nonlinear equations." Applied Mathematics and Computation 193, no. 2 (November 2007): 360–65. http://dx.doi.org/10.1016/j.amc.2007.03.068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Huhtanen, Marko, and Olavi Nevanlinna. "Minimal decompositions and iterative methods." Numerische Mathematik 86, no. 2 (August 2000): 257–81. http://dx.doi.org/10.1007/pl00005406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Iterative methods (Mathematics)"

1

McKay, Melanie. "Iterative methods for incompressible flow." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28063.

Pełny tekst źródła
Streszczenie:
The goal of this thesis is to illustrate the effectiveness of iterative methods on the discretized Navier Stokes equations. The standard lid-driven cavity in both 2-D and 3-D test cases are examined and compared with published results of the same type. The numerical results are obtained by reducing the partial differential equations (PDEs) to a system of algebraic equations with a stabilized P1-P1 Finite Element Method (FEM) in space. Gear's Backward Difference Formula (BDF2) and an adaptive time stepping scheme utilizing a first order Backward Euler (BE) startup and BDF2 are then utilized to
Style APA, Harvard, Vancouver, ISO itp.
2

Kwan, Chun-kit, and 關進傑. "Fast iterative methods for image restoration." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31224520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Karelius, Fanny. "Stationary iterative methods : Five methods and illustrative examples." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69711.

Pełny tekst źródła
Streszczenie:
Systems of large sparse linear equations frequently arise in engineering and science. Therefore, there is a great need for methods that can solve these systems. In this thesis we will present three of the earliest and simplest iterative methods and also look at two more sophisticated methods. We will study their rate of convergence and illustrate them with examples.
Style APA, Harvard, Vancouver, ISO itp.
4

Kwan, Chun-kit. "Fast iterative methods for image restoration /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk:8888/cgi-bin/hkuto%5Ftoc%5Fpdf?B22956281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ho, Ching-wah. "Iterative methods for the Robbins problem /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22054789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

何正華 and Ching-wah Ho. "Iterative methods for the Robbins problem." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31222572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sivaloganathan, S. "Iterative methods for large sparse systems of equations." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Roberts, Harriet. "Preconditioned iterative methods on virtual shared memory machines." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-07292009-090522/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

須成忠 and Cheng-zhong Xu. "Iterative methods for dynamic load balancing in multicomputers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xu, Cheng-zhong. "Iterative methods for dynamic load balancing in multicomputers /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13458905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Iterative methods (Mathematics)"

1

Axelsson, O. Iterative solution methods. Cambridge [England]: Cambridge University Press, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Byrne, C. L. Applied iterative methods. Wellesley, Mass: AK Peters, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ilʹin, V. P. Iterative incomplete factorization methods. Singapore: World Scientific, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1951-, Ésik Zoltán, ed. Iteration theories: The equational logic of iterative processes. Berlin: Springer-Verlag, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Argyos, Ioannis. Advances on iterative procedures. New York: Nova Science Publishers, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Varga, Richard S. Matrix Iterative Analysis. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kelley, C. T. Iterative methods for linear and nonlinear equations. Philadelphia: Society for Industrial and Applied Mathematics, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Weiss, Rüdiger. Parameter-free iterative linear solvers. Berlin: Akademie Verlag, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1958-, Chan Raymond H., Chan Tony F, and Golub Gene H. 1932-, eds. Iterative methods in scientific computing. Singapore: Springer, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bloom, Stephen L. Iteration Theories: The Equational Logic of Iterative Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Iterative methods (Mathematics)"

1

Björck, Åke. "Iterative Methods." In Texts in Applied Mathematics, 613–781. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05089-8_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Van de Velde, Eric F. "Iterative Methods." In Texts in Applied Mathematics, 67–96. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0849-5_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lyche, Tom, and Jean-Louis Merrien. "Iterative Methods." In Exercises in Computational Mathematics with MATLAB, 65–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43511-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bartels, Sören. "Iterative Solution Methods." In Texts in Applied Mathematics, 209–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32354-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Leblond, Michel, François Rousselle, and Christophe Renaud. "Generalized Block Iterative Methods." In Mathematics and Visualization, 261–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05105-4_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Axelsson, Owe. "Classical Iterative Methods." In Encyclopedia of Applied and Computational Mathematics, 205–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bird, John. "Solving equations by iterative methods." In Engineering Mathematics, 154–57. 8th edition. | Abingdon, Oxon ; New York, NY : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315561851-21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Petković, Miodrag. "Iterative methods without derivatives." In Lecture Notes in Mathematics, 31–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0083602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cegielski, Andrzej. "Convergence of Iterative Methods." In Lecture Notes in Mathematics, 105–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30901-4_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Toselli, Andrea, and Olof B. Widlund. "Primal Iterative Substructuring Methods." In Springer Series in Computational Mathematics, 113–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26662-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Iterative methods (Mathematics)"

1

Geiser, Jürgen, José L. Hueso, and Eulalia Martínez. "Parallel iterative splitting methods: Algorithms and applications." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026671.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chicharro, F. I., A. Cordero, and J. R. Torregrosa. "Stability of different families of iterative methods with memory." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Diene, Oumar, Amit Bhaya, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Study of the Robustness of Iterative Methods for Linear Systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Geiser, Jürgen, and Dennis Ogiermann. "Adaptive-iterative implicit methods for solving hodgkin-huxley type systems." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081365.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Amat, Sergio, Sonia Busquier, Miguel Ángel Hernández-Verón, Ángel Alberto Magreñán, and Lara Orcos. "Comparing of the behaviour of iterative methods based on different means." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Geiser, Jürgen, and Karsten Bartecki. "Additive, multiplicative and iterative splitting methods for Maxwell equations: Algorithms and applications." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5044072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Muthuvalu, Mohana Sundaram, Elayaraja Aruchunan, Majid Khan Majahar Ali, and Jumat Sulaiman. "Preconditioned Jacobi-type iterative methods for solving Fredholm integral equations of the second kind." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954529.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Koleva, M. N., Michail D. Todorov, and Christo I. Christov. "Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3rd International Conference—AMiTaNS'11. AIP, 2011. http://dx.doi.org/10.1063/1.3659948.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nedzhibov, Gyurhan H., George Venkov, Ralitza Kovacheva, and Vesela Pasheva. "An approach to accelerate iterative methods for solving nonlinear operator equations." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '11): Proceedings of the 37th International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3664358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Amat, S., S. Busquier, and Á. A. Magreñán. "On a Newton-type family of high-order iterative methods for some matrix functions." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!