Gotowa bibliografia na temat „Jacobi-Davidson Iteration”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Jacobi-Davidson Iteration”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Jacobi-Davidson Iteration"

1

Zhao, Jutao, and Pengfei Guo. "A Study on the Convergence Analysis of the Inexact Simplified Jacobi–Davidson Method." Journal of Mathematics 2021 (December 7, 2021): 1–10. http://dx.doi.org/10.1155/2021/2123897.

Pełny tekst źródła
Streszczenie:
The Jacobi–Davidson iteration method is very efficient in solving Hermitian eigenvalue problems. If the correction equation involved in the Jacobi–Davidson iteration is solved accurately, the simplified Jacobi–Davidson iteration is equivalent to the Rayleigh quotient iteration which achieves cubic convergence rate locally. When the involved linear system is solved by an iteration method, these two methods are also equivalent. In this paper, we present the convergence analysis of the simplified Jacobi–Davidson method and present the estimate of iteration numbers of the inner correction equation
Style APA, Harvard, Vancouver, ISO itp.
2

Kong, Yuan, and Yong Fang. "Behavior of the Correction Equations in the Jacobi–Davidson Method." Mathematical Problems in Engineering 2019 (August 5, 2019): 1–4. http://dx.doi.org/10.1155/2019/5169362.

Pełny tekst źródła
Streszczenie:
The Jacobi–Davidson iteration method is efficient for computing several eigenpairs of Hermitian matrices. Although the involved correction equation in the Jacobi–Davidson method has many developed variants, the behaviors of them are not clear for us. In this paper, we aim to explore, theoretically, the convergence property of the Jacobi–Davidson method influenced by different types of correction equations. As a by-product, we derive the optimal expansion vector, which imposed a shift-and-invert transform on a vector located in the prescribed subspace, to expand the current subspace.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhou, Yunkai. "Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates." Numerical Linear Algebra with Applications 13, no. 8 (2006): 621–42. http://dx.doi.org/10.1002/nla.490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sleijpen, Gerard L. G., and Henk A. Van der Vorst. "A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems." SIAM Review 42, no. 2 (2000): 267–93. http://dx.doi.org/10.1137/s0036144599363084.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

G. Sleijpen, Gerard L., and Henk A. Van der Vorst. "A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems." SIAM Journal on Matrix Analysis and Applications 17, no. 2 (1996): 401–25. http://dx.doi.org/10.1137/s0895479894270427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Freitag, M. A., and A. Spence. "Rayleigh quotient iteration and simplified Jacobi–Davidson method with preconditioned iterative solves." Linear Algebra and its Applications 428, no. 8-9 (2008): 2049–60. http://dx.doi.org/10.1016/j.laa.2007.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Huang, Yin-Liang, Tsung-Ming Huang, Wen-Wei Lin, and Wei-Cheng Wang. "A Null Space Free Jacobi--Davidson Iteration for Maxwell's Operator." SIAM Journal on Scientific Computing 37, no. 1 (2015): A1—A29. http://dx.doi.org/10.1137/140954714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Szyld, Daniel B., and Fei Xue. "Efficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi–Davidson Method." SIAM Journal on Matrix Analysis and Applications 32, no. 3 (2011): 993–1018. http://dx.doi.org/10.1137/100807922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jia, ZhongXiao, and Zhen Wang. "A convergence analysis of the inexact Rayleigh quotient iteration and simplified Jacobi-Davidson method for the large Hermitian matrix eigenproblem." Science in China Series A: Mathematics 51, no. 12 (2008): 2205–16. http://dx.doi.org/10.1007/s11425-008-0050-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hochstenbach, Michiel E., and Yvan Notay. "Controlling Inner Iterations in the Jacobi–Davidson Method." SIAM Journal on Matrix Analysis and Applications 31, no. 2 (2009): 460–77. http://dx.doi.org/10.1137/080732110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Jacobi-Davidson Iteration"

1

Freitag, Melina. "Inner-outer iterative methods for eigenvalue problems : convergence and preconditioning." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512248.

Pełny tekst źródła
Streszczenie:
Many methods for computing eigenvalues of a large sparse matrix involve shift-invert transformations which require the solution of a shifted linear system at each step. This thesis deals with shift-invert iterative techniques for solving eigenvalue problems where the arising linear systems are solved inexactly using a second iterative technique. This approach leads to an inner-outer type algorithm. We provide convergence results for the outer iterative eigenvalue computation as well as techniques for efficient inner solves. In particular eigenvalue computations using inexact inverse iteration,
Style APA, Harvard, Vancouver, ISO itp.
2

Kumar, Neeraj. "Finite Element Method based Model Order Reduction for Electromagnetics." Thesis, 2016. https://etd.iisc.ac.in/handle/2005/4926.

Pełny tekst źródła
Streszczenie:
Model order reduction (MOR) refers to the process of reducing the size of large scale discrete systems with the goal of capturing their behavior in a small and tractable model known as the reduced order model (ROM). ROMs are invariably constructed by projecting the original system onto a low rank subspace that captures the physics for specified range/s of parameter/s. The parameters, say for electromagnetic scattering, can be the frequency of excitation, angle of incidence, and/or material parameters. Thus, ROMs enable fast parameter sweep analysis and quick prototyping. Historically, a major
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Jacobi-Davidson Iteration"

1

Kumar, Neeraj, K. J. Vinoy, and S. Gopalakrishnan. "Jacobi-Davidson iteration based reduced order finite element models for radar cross-section." In 2013 IEEE Applied Electromagnetics Conference (AEMC). IEEE, 2013. http://dx.doi.org/10.1109/aemc.2013.7045048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kumar, Neeraj, K. J. Vinoy, and S. Gopalakrishnan. "Efficient finite element model order reduction of electromagnetic systems using fast converging Jacobi-Davidson Iteration." In 2014 IEEE International Microwave and RF Conference (IMaRC). IEEE, 2014. http://dx.doi.org/10.1109/imarc.2014.7038957.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!