Gotowa bibliografia na temat „K-theory”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „K-theory”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "K-theory"
Ausoni, Christian, i John Rognes. "Algebraic K-theory of topological K-theory". Acta Mathematica 188, nr 1 (2002): 1–39. http://dx.doi.org/10.1007/bf02392794.
Pełny tekst źródłaMitchell, Stephen A. "Topological K-Theory of Algebraic K-Theory Spectra". K-Theory 21, nr 3 (listopad 2000): 229–47. http://dx.doi.org/10.1023/a:1026580718473.
Pełny tekst źródłaFelisatti, Marcello. "Multiplicative K-theory and K-theory of Functors". Mediterranean Journal of Mathematics 5, nr 4 (grudzień 2008): 493–99. http://dx.doi.org/10.1007/s00009-008-0163-0.
Pełny tekst źródłaBouwknegt, Peter, Alan L. Carey, Varghese Mathai, Michael K. Murray i Danny Stevenson. "Twisted K-Theory and K-Theory of Bundle Gerbes". Communications in Mathematical Physics 228, nr 1 (1.06.2002): 17–49. http://dx.doi.org/10.1007/s002200200646.
Pełny tekst źródłaLoday, Jean-Louis. "Algebraic K-Theory and the Conjectural Leibniz K-Theory". K-Theory 30, nr 2 (październik 2003): 105–27. http://dx.doi.org/10.1023/b:kthe.0000018382.90150.ce.
Pełny tekst źródłaKobal, Damjan. "K-Theory, Hermitian K-Theory and the Karoubi Tower". K-Theory 17, nr 2 (czerwiec 1999): 113–40. http://dx.doi.org/10.1023/a:1007799508729.
Pełny tekst źródłaCharles Jones, Kevin, Youngsoo Kim, Andrea H. Mhoon, Rekha Santhanam, Barry J. Walker i Daniel R. Grayson. "The Additivity Theorem in K-Theory". K-Theory 32, nr 2 (czerwiec 2004): 181–91. http://dx.doi.org/10.1023/b:kthe.0000037546.39459.cb.
Pełny tekst źródłaCoutinho, Severino Collier, i Hvedri Inassaridze. "Algebraic K-Theory". Mathematical Gazette 81, nr 490 (marzec 1997): 167. http://dx.doi.org/10.2307/3618817.
Pełny tekst źródłaGeisser, Thomas, Lars Hesselholt, Annette Huber-Klawitter i Moritz Kerz. "Algebraic K-theory". Oberwolfach Reports 16, nr 2 (3.06.2020): 1737–90. http://dx.doi.org/10.4171/owr/2019/29.
Pełny tekst źródłaChowdhry, Maya. "k/not theory". Journal of Lesbian Studies 4, nr 4 (grudzień 2000): 59–70. http://dx.doi.org/10.1300/j155v04n04_05.
Pełny tekst źródłaRozprawy doktorskie na temat "K-theory"
Gritschacher, Simon. "Commutative K-theory". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5d5b0e20-20ef-4eec-a032-8bcb5fe59884.
Pełny tekst źródłaLevikov, Filipp. "L-theory, K-theory and involutions". Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201918.
Pełny tekst źródłaTakeda, Yuichiro. "Localization theorem in equivariant algebraic K-theory". 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/202419.
Pełny tekst źródłaStefański, Bogdan. "String theory, dirichlet branes and K-theory". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621023.
Pełny tekst źródłaBraun, Volker Friedrich. "K-theory and exceptional holonomy in string theory". Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965401650.
Pełny tekst źródłaMitchener, Paul David. "K-theory of C*-categories". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365771.
Pełny tekst źródłaZakharevich, Inna (Inna Ilana). "Scissors congruence and K-theory". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73376.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-84).
In this thesis we develop a version of classical scissors congruence theory from the perspective of algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion to an abstract problem: given a set of objects and decomposition and congruence relations between them, when are two objects in the set scissors congruent? By packaging the scissors congruence information in a Waldhausen category we construct a spectrum whose homotopy groups include information about the scissors congruence problem. We then turn our attention to generalizing constructions from the classical case to these Waldhausen categories, and find constructions for cofibers, suspensions, and products of scissors congruence problems.
by Inna Zakharevich.
Ph.D.
Cain, Christopher. "K-theory of Fermat curves". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/262483.
Pełny tekst źródłaBunch, Eric. "K-Theory in categorical geometry". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Pełny tekst źródłaDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Hedlund, William. "K-Theory and An-Spaces". Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414082.
Pełny tekst źródłaKsiążki na temat "K-theory"
Atiyah, Michael Francis. K-theory. Redwood City, Calif: Addison-Wesley Pub. Co., Advanced Book Program, 1989.
Znajdź pełny tekst źródłaInassaridze, H. Algebraic K-theory. Dordrecht: Kluwer Academic Publishers, 1995.
Znajdź pełny tekst źródłaSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-0-8176-4739-1.
Pełny tekst źródłaInassaridze, Hvedri. Algebraic K-Theory. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8569-9.
Pełny tekst źródłaSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4899-6735-0.
Pełny tekst źródłaInternational Meeting on K-theory (1992 : Institut de recherche mathématique avancée), red. K-theory: Strasbourg, 1992. Paris: Société mathématique de France, 1994.
Znajdź pełny tekst źródłaPenner, Robert. Topology and K-Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5.
Pełny tekst źródłaKiechle, Hubert. Theory of K-Loops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83276.
Pełny tekst źródłaCzęści książek na temat "K-theory"
Abrams, Gene, Pere Ara i Mercedes Siles Molina. "K-Theory". W Lecture Notes in Mathematics, 219–57. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7344-1_6.
Pełny tekst źródłaShafarevich, Igor R. "K-theory". W Encyclopaedia of Mathematical Sciences, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_22.
Pełny tekst źródłaMukherjee, Amiya. "K-Theory". W Atiyah-Singer Index Theorem, 1–34. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_1.
Pełny tekst źródłaStrung, Karen R. "K-theory". W Advanced Courses in Mathematics - CRM Barcelona, 175–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47465-2_12.
Pełny tekst źródłaLevine, Marc. "K-theory". W Mixed Motives, 357–69. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/surv/057/08.
Pełny tekst źródłaAguilar, Marcelo, Samuel Gitler i Carlos Prieto. "K-Theory". W Universitext, 289–307. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-22489-0_9.
Pełny tekst źródłaHusemoller, Dale. "Relative K-Theory". W Graduate Texts in Mathematics, 122–39. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2261-1_10.
Pełny tekst źródłaMukherjee, Amiya. "Equivariant K-Theory". W Atiyah-Singer Index Theorem, 178–99. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_7.
Pełny tekst źródłaDundas, Bjørn Ian, Thomas G. Goodwillie i Randy McCarthy. "Algebraic K-Theory". W The Local Structure of Algebraic K-Theory, 1–61. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4393-2_1.
Pełny tekst źródłaFeigin, B. L., i B. L. Tsygan. "Additive K-theory". W K-Theory, Arithmetic and Geometry, 67–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078368.
Pełny tekst źródłaStreszczenia konferencji na temat "K-theory"
D'Ambrosio, Giancarlo. "Theory of rare $K$ decays". W 9th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.291.0061.
Pełny tekst źródłaTamaki, Dai. "Twisting Segal's K-Homology Theory". W Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0007.
Pełny tekst źródłaD'Ambrosio, Giancarlo. "Theory of rare K decays". W The International Conference on B-Physics at Frontier Machines. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.326.0027.
Pełny tekst źródłaMishchenko, Alexandr S. "K-theory over C*-algebras". W Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-13.
Pełny tekst źródłaJardine, John F. "The K–theory presheaf of spectra". W New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.151.
Pełny tekst źródłaJOACHIM, MICHAEL. "UNBOUNDED FREDHOLM OPERATORS AND K-THEORY". W Proceedings of the School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704443_0009.
Pełny tekst źródłaBass, H., A. O. Kuku i C. Pedrini. "Algebraic K-Theory and its Applications". W Workshop and Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814528474.
Pełny tekst źródłaSzabo, Richard J. "D-Branes and Bivariant K-Theory". W Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0005.
Pełny tekst źródłaNabeebaccus, Saad, i Roman Zwicky. "On the $ R_{K} $ theory error". W 11th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.411.0071.
Pełny tekst źródłaSATI, H. "SOME RELATIONS BETWEEN TWISTED K-THEORY AND E8 GAUGE THEORY". W Proceedings of the 32nd Coral Gables Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701992_0049.
Pełny tekst źródłaRaporty organizacyjne na temat "K-theory"
Falco, Domenico, i Alessandro Giulini. Asymptotic Modeling of Wave Functions, Regular Curves and Riemannian K-Theory. Web of Open Science, luty 2020. http://dx.doi.org/10.37686/qrl.v1i1.3.
Pełny tekst źródłaAdams, Allan W. Strings, Branes and K-Theory from E{sub 8} Bundles in 11 Dimensions. Office of Scientific and Technical Information (OSTI), sierpień 2002. http://dx.doi.org/10.2172/799922.
Pełny tekst źródłaMARKOV, R. S., E. A. BURTSEVA i E. I. SHURUPOVA. THE ORIGIN OF THE STATE IN THE SOCIO-PHILOSOPHICAL PARADIGM K. LEONTIEV. Science and Innovation Center Publishing House, kwiecień 2022. http://dx.doi.org/10.12731/2077-1770-2021-14-1-2-29-37.
Pełny tekst źródłaMuller, L., G. Yang i V. Comalino. Integrability in Constructive K-Theory mathematical model for operation algorithms of an airship anti-stealth radar. Web of Open Science, luty 2020. http://dx.doi.org/10.37686/ser.v1i1.2.
Pełny tekst źródłaMacFarlane, Andrew. 2021 medical student essay prize winner - A case of grief. Society for Academic Primary Care, lipiec 2021. http://dx.doi.org/10.37361/medstudessay.2021.1.1.
Pełny tekst źródła