Artykuły w czasopismach na temat „KCNQ channels”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „KCNQ channels”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pattnaik, Bikash R., and Bret A. Hughes. "Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium." American Journal of Physiology-Cell Physiology 302, no. 5 (2012): C821—C833. http://dx.doi.org/10.1152/ajpcell.00269.2011.
Pełny tekst źródłaGamper, Nikita, Yang Li, and Mark S. Shapiro. "Structural Requirements for Differential Sensitivity of KCNQ K+ Channels to Modulation by Ca2+/Calmodulin." Molecular Biology of the Cell 16, no. 8 (2005): 3538–51. http://dx.doi.org/10.1091/mbc.e04-09-0849.
Pełny tekst źródłaBrueggemann, Lioubov I., Jennifer M. Haick, Samantha Neuburg та ін. "KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways". American Journal of Physiology-Lung Cellular and Molecular Physiology 306, № 6 (2014): L476—L486. http://dx.doi.org/10.1152/ajplung.00253.2013.
Pełny tekst źródłaZhang, Xiaoming, Dongli Yang, and Bret A. Hughes. "KCNQ5/Kv7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina." American Journal of Physiology-Cell Physiology 301, no. 5 (2011): C1017—C1026. http://dx.doi.org/10.1152/ajpcell.00185.2011.
Pełny tekst źródłaWang, Alice W., Michael C. Yau, Caroline K. Wang, et al. "Four drug-sensitive subunits are required for maximal effect of a voltage sensor–targeted KCNQ opener." Journal of General Physiology 150, no. 10 (2018): 1432–43. http://dx.doi.org/10.1085/jgp.201812014.
Pełny tekst źródłaPablo, Juan Lorenzo, and Geoffrey S. Pitt. "FGF14 is a regulator of KCNQ2/3 channels." Proceedings of the National Academy of Sciences 114, no. 1 (2016): 154–59. http://dx.doi.org/10.1073/pnas.1610158114.
Pełny tekst źródłaLi, Yang, Paul Langlais, Nikita Gamper, Feng Liu, and Mark S. Shapiro. "Dual Phosphorylations Underlie Modulation of Unitary KCNQ K+Channels by Src Tyrosine Kinase." Journal of Biological Chemistry 279, no. 44 (2004): 45399–407. http://dx.doi.org/10.1074/jbc.m408410200.
Pełny tekst źródłaZhang, Fan, Yani Liu, Dandan Zhang, Xizhenzi Fan, Decheng Shao, and Han Li. "Suppression of KCNQ/M Potassium Channel in Dorsal Root Ganglia Neurons Contributes to the Development of Osteoarthritic Pain." Pharmacology 103, no. 5-6 (2019): 257–62. http://dx.doi.org/10.1159/000496422.
Pełny tekst źródłaSchuetz, Friderike, Sharad Kumar, Philip Poronnik, and David J. Adams. "Regulation of the voltage-gated K+ channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1." American Journal of Physiology-Cell Physiology 295, no. 1 (2008): C73—C80. http://dx.doi.org/10.1152/ajpcell.00146.2008.
Pełny tekst źródłaLagrange, Andre. "Retigabine: Bending Potassium Channels to Our Will." Epilepsy Currents 5, no. 5 (2005): 166–68. http://dx.doi.org/10.1111/j.1535-7511.2005.00052.x.
Pełny tekst źródłaLee, Sang-Yeon, Hyun Been Choi, Mina Park, et al. "Novel KCNQ4 variants in different functional domains confer genotype- and mechanism-based therapeutics in patients with nonsyndromic hearing loss." Experimental & Molecular Medicine 53, no. 7 (2021): 1192–204. http://dx.doi.org/10.1038/s12276-021-00653-4.
Pełny tekst źródłaHamilton, Kirk L., and Daniel C. Devor. "Basolateral membrane K+ channels in renal epithelial cells." American Journal of Physiology-Renal Physiology 302, no. 9 (2012): F1069—F1081. http://dx.doi.org/10.1152/ajprenal.00646.2011.
Pełny tekst źródłaLombardo, Joseph, and Melissa A. Harrington. "Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels." Journal of Neurophysiology 116, no. 5 (2016): 2114–24. http://dx.doi.org/10.1152/jn.00446.2016.
Pełny tekst źródłaYau, Michael C., Robin Y. Kim, Caroline K. Wang, et al. "One drug-sensitive subunit is sufficient for a near-maximal retigabine effect in KCNQ channels." Journal of General Physiology 150, no. 10 (2018): 1421–31. http://dx.doi.org/10.1085/jgp.201812013.
Pełny tekst źródłaKim, Robin Y., Stephan A. Pless, and Harley T. Kurata. "PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels." Proceedings of the National Academy of Sciences 114, no. 45 (2017): E9702—E9711. http://dx.doi.org/10.1073/pnas.1705802114.
Pełny tekst źródłaSingh, Som P., Matthew William, Mira Malavia, and Xiang-Ping Chu. "Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders." Membranes 12, no. 5 (2022): 499. http://dx.doi.org/10.3390/membranes12050499.
Pełny tekst źródłaWu, Wendy W., C. Savio Chan, D. James Surmeier, and John F. Disterhoft. "Coupling of L-Type Ca2+ Channels to KV7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity." Journal of Neurophysiology 100, no. 4 (2008): 1897–908. http://dx.doi.org/10.1152/jn.90346.2008.
Pełny tekst źródłaGao, Haixia, Aurélien Boillat, Dongyang Huang, Ce Liang, Chris Peers, and Nikita Gamper. "Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate." Proceedings of the National Academy of Sciences 114, no. 31 (2017): E6410—E6419. http://dx.doi.org/10.1073/pnas.1620598114.
Pełny tekst źródłaInanobe, Atsushi, Chizuru Tsuzuki, and Yoshihisa Kurachi. "An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels." Cellular Physiology and Biochemistry 36, no. 5 (2015): 1847–61. http://dx.doi.org/10.1159/000430155.
Pełny tekst źródłaShorthouse, David, Lizhe Zhuang, Eric P. Rahrmann, et al. "KCNQ potassium channels modulate Wnt activity in gastro-oesophageal adenocarcinomas." Life Science Alliance 6, no. 12 (2023): e202302124. http://dx.doi.org/10.26508/lsa.202302124.
Pełny tekst źródłaWang, Caroline K., Shawn M. Lamothe, Alice W. Wang, Runying Y. Yang, and Harley T. Kurata. "Pore- and voltage sensor–targeted KCNQ openers have distinct state-dependent actions." Journal of General Physiology 150, no. 12 (2018): 1722–34. http://dx.doi.org/10.1085/jgp.201812070.
Pełny tekst źródłaGourgy-Hacohen, Orit, Polina Kornilov, Ilya Pittel, Asher Peretz, Bernard Attali, and Yoav Paas. "Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain." Journal of General Physiology 144, no. 6 (2014): 513–27. http://dx.doi.org/10.1085/jgp.201411221.
Pełny tekst źródłaHomma, Kazuaki. "The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants." Biomedicines 10, no. 9 (2022): 2254. http://dx.doi.org/10.3390/biomedicines10092254.
Pełny tekst źródłaWu, Zizhen, Gabor Toro, Guoying Xu, Danny Dang, Charmaine Prater, and Qing Yang. "Paclitaxel Inhibits KCNQ Channels in Primary Sensory Neurons to Initiate the Development of Painful Peripheral Neuropathy." Cells 11, no. 24 (2022): 4067. http://dx.doi.org/10.3390/cells11244067.
Pełny tekst źródłaSuh, Byung-Chang, Lisa F. Horowitz, Wiebke Hirdes, Ken Mackie, and Bertil Hille. "Regulation of KCNQ2/KCNQ3 Current by G Protein Cycling." Journal of General Physiology 123, no. 6 (2004): 663–83. http://dx.doi.org/10.1085/jgp.200409029.
Pełny tekst źródłaGao, Lei, Hong Fei, Nathan C. Connors, Jiaming Zhang та Irwin B. Levitan. "Drosophila Ortholog of Succinyl-CoA Synthetase β Subunit: A Novel Modulator of Drosophila KCNQ Channels". Journal of Neurophysiology 99, № 5 (2008): 2736–40. http://dx.doi.org/10.1152/jn.01314.2007.
Pełny tekst źródłaBrueggemann, Lioubov I., Christopher J. Moran, John A. Barakat, Jay Z. Yeh, Leanne L. Cribbs, and Kenneth L. Byron. "Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells." American Journal of Physiology-Heart and Circulatory Physiology 292, no. 3 (2007): H1352—H1363. http://dx.doi.org/10.1152/ajpheart.00065.2006.
Pełny tekst źródłaBrown, David A., and Gayle M. Passmore. "Neural KCNQ (Kv7) channels." British Journal of Pharmacology 156, no. 8 (2009): 1185–95. http://dx.doi.org/10.1111/j.1476-5381.2009.00111.x.
Pełny tekst źródłaTzingounis, Anastasios V. "SMITten for KCNQ Channels." Biophysical Journal 113, no. 3 (2017): 503–5. http://dx.doi.org/10.1016/j.bpj.2017.06.056.
Pełny tekst źródłaGibor, Gilad, Daniel Yakubovich, Asher Peretz, and Bernard Attali. "External Barium Affects the Gating of KCNQ1 Potassium Channels and Produces a Pore Block via Two Discrete Sites." Journal of General Physiology 124, no. 1 (2004): 83–102. http://dx.doi.org/10.1085/jgp.200409068.
Pełny tekst źródłaCavaliere, Sonia, and James J. L. Hodge. "Drosophila KCNQ Channel Displays Evolutionarily Conserved Electrophysiology and Pharmacology with Mammalian KCNQ Channels." PLoS ONE 6, no. 9 (2011): e23898. http://dx.doi.org/10.1371/journal.pone.0023898.
Pełny tekst źródłaLambrecht, Nils W. G., Iskandar Yakubov, David Scott, and George Sachs. "Identification of the K efflux channel coupled to the gastric H-K-ATPase during acid secretion." Physiological Genomics 21, no. 1 (2005): 81–91. http://dx.doi.org/10.1152/physiolgenomics.00212.2004.
Pełny tekst źródłaOhya, Susumu, Keiichi Asakura, Katsuhiko Muraki, Minoru Watanabe, and Yuji Imaizumi. "Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle." American Journal of Physiology-Gastrointestinal and Liver Physiology 282, no. 2 (2002): G277—G287. http://dx.doi.org/10.1152/ajpgi.00200.2001.
Pełny tekst źródłaLee, Choongheon, J. Chris Holt, and Timothy A. Jones. "Effect of M-current modulation on mammalian vestibular responses to transient head motion." Journal of Neurophysiology 118, no. 6 (2017): 2991–3006. http://dx.doi.org/10.1152/jn.00384.2017.
Pełny tekst źródłaSuh, Byung-Chang, and Bertil Hille. "Does diacylglycerol regulate KCNQ channels?" Pflügers Archiv - European Journal of Physiology 453, no. 3 (2006): 293–301. http://dx.doi.org/10.1007/s00424-006-0092-3.
Pełny tekst źródłaLuo, Lei, Bowen Li, Sheng Wang, et al. "Centipedes subdue giant prey by blocking KCNQ channels." Proceedings of the National Academy of Sciences 115, no. 7 (2018): 1646–51. http://dx.doi.org/10.1073/pnas.1714760115.
Pełny tekst źródłaHawkins, Virginia E., Joanna M. Hawryluk, Ana C. Takakura, Anastasios V. Tzingounis, Thiago S. Moreira, and Daniel K. Mulkey. "HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity." Journal of Neurophysiology 113, no. 4 (2015): 1195–205. http://dx.doi.org/10.1152/jn.00487.2014.
Pełny tekst źródłaJow, Flora, Ru Shen, Pranab Chanda, et al. "Validation of a Medium-Throughput Electrophysiological Assay for KCNQ2/3 Channel Enhancers Using IonWorks HT." Journal of Biomolecular Screening 12, no. 8 (2007): 1059–67. http://dx.doi.org/10.1177/1087057107307448.
Pełny tekst źródłaSuh, Byung-Chang, and Bertil Hille. "Electrostatic Interaction of Internal Mg2+ with Membrane PIP2 Seen with KCNQ K+ Channels." Journal of General Physiology 130, no. 3 (2007): 241–56. http://dx.doi.org/10.1085/jgp.200709821.
Pełny tekst źródłaJepps, Thomas A., Iain A. Greenwood, James D. Moffatt, Kenton M. Sanders, and Susumu Ohya. "Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles." American Journal of Physiology-Gastrointestinal and Liver Physiology 297, no. 1 (2009): G107—G115. http://dx.doi.org/10.1152/ajpgi.00057.2009.
Pełny tekst źródłaWei, Aguan D., Alice Butler, and Lawrence Salkoff. "KCNQ-like Potassium Channels inCaenorhabditis elegans." Journal of Biological Chemistry 280, no. 22 (2005): 21337–45. http://dx.doi.org/10.1074/jbc.m502734200.
Pełny tekst źródłaMruk, Karen, Robert O. Blaustein, and William R. Kobertz. "Pinpointing Calmodulin on Functioning KCNQ Channels." Biophysical Journal 100, no. 3 (2011): 100a. http://dx.doi.org/10.1016/j.bpj.2010.12.751.
Pełny tekst źródłaCooper, Edward C. "Potassium channels (including KCNQ) and epilepsy." Epilepsia 51 (December 2010): 10. http://dx.doi.org/10.1111/j.1528-1167.2010.02796.x.
Pełny tekst źródłaEvseev, Alexey I., Iurii Semenov, Robert Brenner, and Mark S. Shapiro. "Kcnq Channels in Airway Smooth Muscle." Biophysical Journal 104, no. 2 (2013): 269a. http://dx.doi.org/10.1016/j.bpj.2012.11.1511.
Pełny tekst źródłaDu, Canwei, Jiameng Li, Zicheng Shao, et al. "Centipede KCNQ Inhibitor SsTx Also Targets KV1.3." Toxins 11, no. 2 (2019): 76. http://dx.doi.org/10.3390/toxins11020076.
Pełny tekst źródłaCao, Yumei, David Bartolomé-Martín, Naama Rotem, et al. "Rescue of homeostatic regulation of striatal excitability and locomotor activity in a mouse model of Huntington’s disease." Proceedings of the National Academy of Sciences 112, no. 7 (2015): 2239–44. http://dx.doi.org/10.1073/pnas.1405748112.
Pełny tekst źródłaLarsson, Peter. "Regulation of Voltage Sensor Movement in KCNQ Channels by KCNE Beta Subunits." Biophysical Journal 104, no. 2 (2013): 7a. http://dx.doi.org/10.1016/j.bpj.2012.11.065.
Pełny tekst źródłaNakajo, Koichi, and Yoshihiro Kubo. "Mechanisms underlying subunit recognition and channel assembly in KCNQ channels." Neuroscience Research 58 (January 2007): S188. http://dx.doi.org/10.1016/j.neures.2007.06.832.
Pełny tekst źródłaBorgini, Matteo, Pravat Mondal, Ruiting Liu, and Peter Wipf. "Chemical modulation of Kv7 potassium channels." RSC Medicinal Chemistry 12, no. 4 (2021): 483–537. http://dx.doi.org/10.1039/d0md00328j.
Pełny tekst źródłaLi, Xiaofan, Hansi Liu, Jose Chu Luo, et al. "Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans." Proceedings of the National Academy of Sciences 112, no. 9 (2015): E1010—E1019. http://dx.doi.org/10.1073/pnas.1422941112.
Pełny tekst źródła