Artykuły w czasopismach na temat „Kernel mean embedding”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Kernel mean embedding”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Berquin, Yann. "Kernel mean embedding vs kernel density estimation: A quantum perspective." Physics Letters A 528 (December 2024): 130047. http://dx.doi.org/10.1016/j.physleta.2024.130047.
Pełny tekst źródłaJorgensen, Palle E. T., Myung-Sin Song, and James Tian. "Conditional mean embedding and optimal feature selection via positive definite kernels." Opuscula Mathematica 44, no. 1 (2024): 79–103. http://dx.doi.org/10.7494/opmath.2024.44.1.79.
Pełny tekst źródłaChen, Wei, Jun-Xiang Mao, and Min-Ling Zhang. "Learnware Specification via Label-Aware Neural Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 15857–65. https://doi.org/10.1609/aaai.v39i15.33741.
Pełny tekst źródłaMuandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. "Kernel Mean Embedding of Distributions: A Review and Beyond." Foundations and Trends® in Machine Learning 10, no. 1-2 (2017): 1–141. http://dx.doi.org/10.1561/2200000060.
Pełny tekst źródłaVan Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. "Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding." Pharmaceutics 12, no. 3 (2020): 271. http://dx.doi.org/10.3390/pharmaceutics12030271.
Pełny tekst źródłaXu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation Graph Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Pełny tekst źródłaRustamov, Raif M., and James T. Klosowski. "Kernel mean embedding based hypothesis tests for comparing spatial point patterns." Spatial Statistics 38 (August 2020): 100459. http://dx.doi.org/10.1016/j.spasta.2020.100459.
Pełny tekst źródłaHou, Boya, Sina Sanjari, Nathan Dahlin, and Subhonmesh Bose. "Compressed Decentralized Learning of Conditional Mean Embedding Operators in Reproducing Kernel Hilbert Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 7902–9. http://dx.doi.org/10.1609/aaai.v37i7.25956.
Pełny tekst źródłaSegera, Davies, Mwangi Mbuthia, and Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis." BioMed Research International 2019 (December 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Pełny tekst źródłaMuralinath, Rashmi N., Vishwambhar Pathak, and Prabhat K. Mahanti. "Metastable Substructure Embedding and Robust Classification of Multichannel EEG Data Using Spectral Graph Kernels." Future Internet 17, no. 3 (2025): 102. https://doi.org/10.3390/fi17030102.
Pełny tekst źródłaWang, Yufan, Zijing Wang, Kai Ming Ting, and Yuanyi Shang. "A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection." Journal of Artificial Intelligence Research 79 (March 13, 2024): 865–93. http://dx.doi.org/10.1613/jair.1.15849.
Pełny tekst źródłaBrandman, David M., Michael C. Burkhart, Jessica Kelemen, Brian Franco, Matthew T. Harrison, and Leigh R. Hochberg. "Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression." Neural Computation 30, no. 11 (2018): 2986–3008. http://dx.doi.org/10.1162/neco_a_01129.
Pełny tekst źródłaShi, Zhenbo, Xiaoman Liu, Yuxuan Zhang, et al. "Stop Diverse OOD Attacks: Knowledge Ensemble for Reliable Defense." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20436–44. https://doi.org/10.1609/aaai.v39i19.34251.
Pełny tekst źródłaAli, Sarwan, and Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences." J 6, no. 4 (2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Pełny tekst źródłaZhang, Hansong, Shikun Li, Pengju Wang, Dan Zeng, and Shiming Ge. "M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 9314–22. http://dx.doi.org/10.1609/aaai.v38i8.28784.
Pełny tekst źródłaSolodukha, Roman. "STATISTICAL STEGANALYSIS OF PHOTOREALISTIC IMAGES USING GRADIENT PATHS." Voprosy kiberbezopasnosti, no. 1(47) (2022): 26–36. http://dx.doi.org/10.21681/2311-3456-2022-1-26-36.
Pełny tekst źródłaTing, Kai Ming, Zongyou Liu, Hang Zhang, and Ye Zhu. "A new distributional treatment for time series and an anomaly detection investigation." Proceedings of the VLDB Endowment 15, no. 11 (2022): 2321–33. http://dx.doi.org/10.14778/3551793.3551796.
Pełny tekst źródłaQian, Hangwei, Sinno Jialin Pan, and Chunyan Miao. "Distribution-Based Semi-Supervised Learning for Activity Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 7699–706. http://dx.doi.org/10.1609/aaai.v33i01.33017699.
Pełny tekst źródłaHuang, Shimeng, Elisabeth Ailer, Niki Kilbertus, and Niklas Pfister. "Supervised learning and model analysis with compositional data." PLOS Computational Biology 19, no. 6 (2023): e1011240. http://dx.doi.org/10.1371/journal.pcbi.1011240.
Pełny tekst źródłaBie, Mei, Huan Xu, Quanle Liu, Yan Gao, Kai Song, and Xiangjiu Che. "DA-FER: Domain Adaptive Facial Expression Recognition." Applied Sciences 13, no. 10 (2023): 6314. http://dx.doi.org/10.3390/app13106314.
Pełny tekst źródłaJi, Bo-Ya, Liang-Rui Pan, Ji-Ren Zhou, Zhu-Hong You, and Shao-Liang Peng. "SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation." Biology 11, no. 5 (2022): 777. http://dx.doi.org/10.3390/biology11050777.
Pełny tekst źródłaHarris, Matthew. "KLRfome - Kernel Logistic Regression on Focal Mean Embeddings." Journal of Open Source Software 4, no. 35 (2019): 722. http://dx.doi.org/10.21105/joss.00722.
Pełny tekst źródłaDe Cannière, Hélène, Federico Corradi, Christophe J. P. Smeets, et al. "Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation." Sensors 20, no. 12 (2020): 3601. http://dx.doi.org/10.3390/s20123601.
Pełny tekst źródłaHempel, John. "One-relator surface groups." Mathematical Proceedings of the Cambridge Philosophical Society 108, no. 3 (1990): 467–74. http://dx.doi.org/10.1017/s030500410006936x.
Pełny tekst źródłaDong, Alice X. D., Jennifer S. K. Chan, and Gareth W. Peters. "RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES." ASTIN Bulletin 45, no. 3 (2015): 503–50. http://dx.doi.org/10.1017/asb.2015.8.
Pełny tekst źródłaSaito, Shota. "Hypergraph Modeling via Spectral Embedding Connection: Hypergraph Cut, Weighted Kernel k-Means, and Heat Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 8141–49. http://dx.doi.org/10.1609/aaai.v36i7.20787.
Pełny tekst źródłaZang, Xian, and Kil To Chong. "Embedding Global Optimization and Kernelization into Fuzzy C-Means Clustering for Consonant/Vowel Segmentation." Applied Mechanics and Materials 419 (October 2013): 814–19. http://dx.doi.org/10.4028/www.scientific.net/amm.419.814.
Pełny tekst źródłaKanagawa, Motonobu, Yu Nishiyama, Arthur Gretton, and Kenji Fukumizu. "Filtering with State-Observation Examples via Kernel Monte Carlo Filter." Neural Computation 28, no. 2 (2016): 382–444. http://dx.doi.org/10.1162/neco_a_00806.
Pełny tekst źródłaZhang, Yi, Jie Lu, Feng Liu, et al. "Does deep learning help topic extraction? A kernel k-means clustering method with word embedding." Journal of Informetrics 12, no. 4 (2018): 1099–117. http://dx.doi.org/10.1016/j.joi.2018.09.004.
Pełny tekst źródłaTamas, Ambrus, and Balazs Csanad Csaji. "Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings." IEEE Control Systems Letters 6 (2022): 860–65. http://dx.doi.org/10.1109/lcsys.2021.3087409.
Pełny tekst źródłaCong, Zhang, Zeng Shan, and Zhang Hui. "Electrocardiography Classification Based on Revised Locally Linear Embedding Algorithm and Kernel-Based Fuzzy C-Means Clustering." Journal of Medical Imaging and Health Informatics 4, no. 6 (2014): 916–21. http://dx.doi.org/10.1166/jmihi.2014.1342.
Pełny tekst źródłaYasemin, Atayolu*, and Kutlu Yakup. "Effective Use of Content as a Feature in IMDB Dataset Analysis." Journal of Artificial Intelligence with Applications 4, no. 1 (2023): 1–6. https://doi.org/10.5281/zenodo.14587323.
Pełny tekst źródłaLiu, Yang, Jiayun Tian, Xuemei Liu, et al. "Research on a Knowledge Graph Embedding Method Based on Improved Convolutional Neural Networks for Hydraulic Engineering." Electronics 12, no. 14 (2023): 3099. http://dx.doi.org/10.3390/electronics12143099.
Pełny tekst źródłaTschan-Plessl, Astrid, Eivind Heggernes Ask, Thea Johanne Gjerdingen, et al. "System-Level Disease-Driven Immune Signatures in Patients with Diffuse Large B-Cell Lymphoma Associated with Poor Survival." Blood 134, Supplement_1 (2019): 2897. http://dx.doi.org/10.1182/blood-2019-131359.
Pełny tekst źródłaHuang, Jingxu, Qiong Liu, Lang Xiang, Guangrui Li, Yiqing Zhang, and Wenbai Chen. "A Lightweight Residual Model for Corrosion Segmentation with Local Contextual Information." Applied Sciences 12, no. 18 (2022): 9095. http://dx.doi.org/10.3390/app12189095.
Pełny tekst źródłaKusaba, Minoru, Yoshihiro Hayashi, Chang Liu, Araki Wakiuchi, and Ryo Yoshida. "Representation of materials by kernel mean embedding." Physical Review B 108, no. 13 (2023). http://dx.doi.org/10.1103/physrevb.108.134107.
Pełny tekst źródłaWu, Xi-Zhu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. "Model Reuse with Reduced Kernel Mean Embedding Specification." IEEE Transactions on Knowledge and Data Engineering, 2021, 1. http://dx.doi.org/10.1109/tkde.2021.3086619.
Pełny tekst źródłaGuo, Liping, Jimin Wang, Yanlong Zhao, and Ji-Feng Zhang. "Consensus-Based Distributed Nonlinear Filtering With Kernel Mean Embedding." IEEE Transactions on Aerospace and Electronic Systems, 2024, 1–16. https://doi.org/10.1109/taes.2024.3513280.
Pełny tekst źródłaLi, Guofa, Zefeng Ji, Yunlong Chang, Shen Li, Xingda Qu, and Dongpu Cao. "ML-ANet: A Transfer Learning Approach Using Adaptation Network for Multi-label Image Classification in Autonomous Driving." Chinese Journal of Mechanical Engineering 34, no. 1 (2021). http://dx.doi.org/10.1186/s10033-021-00598-9.
Pełny tekst źródłaAlyakin, Anton A., Joshua Agterberg, Hayden S. Helm, and Carey E. Priebe. "Correcting a nonparametric two-sample graph hypothesis test for graphs with different numbers of vertices with applications to connectomics." Applied Network Science 9, no. 1 (2024). http://dx.doi.org/10.1007/s41109-023-00607-x.
Pełny tekst źródłaHayati, Saeed, Kenji Fukumizu, and Afshin Parvardeh. "Kernel Mean Embedding of Probability Measures and its Applications to Functional Data Analysis." Scandinavian Journal of Statistics, October 12, 2023. http://dx.doi.org/10.1111/sjos.12691.
Pełny tekst źródłaGual-Arnau, Ximo, and Juan Monterde. "Enhancing a Kernel Method for Shape Analysis in Kendall Space." Journal of Mathematical Imaging and Vision 67, no. 2 (2025). https://doi.org/10.1007/s10851-025-01235-z.
Pełny tekst źródłaDas, Srinjoy, Hrushikesh N. Mhaskar, and Alexander Cloninger. "Kernel Distance Measures for Time Series, Random Fields and Other Structured Data." Frontiers in Applied Mathematics and Statistics 7 (December 22, 2021). http://dx.doi.org/10.3389/fams.2021.787455.
Pełny tekst źródłaWynne, George, and Stanislav Nagy. "Statistical Depth Meets Machine Learning: Kernel Mean Embeddings and Depth in Functional Data Analysis." International Statistical Review, March 16, 2025. https://doi.org/10.1111/insr.12611.
Pełny tekst źródłaGarcía Meixide, Carlos, and Marcos Matabuena. "Causal survival embeddings: Non-parametric counterfactual inference under right-censoring." Statistical Methods in Medical Research, February 11, 2025. https://doi.org/10.1177/09622802241311455.
Pełny tekst źródłaAlquier, P., and M. Gerber. "Universal Robust Regression via Maximum Mean Discrepancy." Biometrika, May 10, 2023. http://dx.doi.org/10.1093/biomet/asad031.
Pełny tekst źródłaJarne, Cecilia, Ben Griffin, and Diego Vidaurre. "Predicting Subject Traits From Brain Spectral Signatures: An Application to Brain Ageing." Human Brain Mapping 45, no. 18 (2024). https://doi.org/10.1002/hbm.70096.
Pełny tekst źródłaWu, Jiawei, Teng Wang, Lijun Yang, and Jingxuan Li. "Extrapolation method of flame nonlinear thermoacoustic response in the time domain based on the kernel embedding of conditional distribution." Physics of Fluids 37, no. 3 (2025). https://doi.org/10.1063/5.0256838.
Pełny tekst źródłaGachon, Erell, Jérémie Bigot, Elsa Cazelles, et al. "Low Dimensional Representation of Multi‐Patient Flow Cytometry Datasets Using Optimal Transport for Measurable Residual Disease Detection in Leukemia." Cytometry Part A, March 3, 2025. https://doi.org/10.1002/cyto.a.24918.
Pełny tekst źródłaHUNG, MING HUI, Chun-Hung Chen, Yu-Hsuan Tseng, and Chin-Chou Huang. "Abstract 4145524: Artificial Intelligence-Based Screening for Blood Pressure Phenotypes of White-coat and Masked Hypertension in Outpatient Settings." Circulation 150, Suppl_1 (2024). http://dx.doi.org/10.1161/circ.150.suppl_1.4145524.
Pełny tekst źródła