Artykuły w czasopismach na temat „Kindline-2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Kindline-2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mi, Yingchang, Wenbin Wu, Qing Zhang, Yan Li, Xiaoyan Li, Zheng Tian i Min Wang. "Expression of Kindlins in Acute Myeloid Leukemia". Blood 118, nr 21 (18.11.2011): 4910. http://dx.doi.org/10.1182/blood.v118.21.4910.4910.
Pełny tekst źródłaKadry, Yasmin A., Eesha M. Maisuria, Clotilde Huet-Calderwood i David A. Calderwood. "Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding". Journal of Biological Chemistry 295, nr 32 (16.06.2020): 11161–73. http://dx.doi.org/10.1074/jbc.ra120.013618.
Pełny tekst źródłaMcDowall, Alison, Lena Svensson, Paula Stanley, Irene Patzak, Probir Chakravarty, Kimberley Howarth, Himalee Sabnis, Michael Briones i Nancy Hogg. "Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro". Blood 115, nr 23 (10.06.2010): 4834–42. http://dx.doi.org/10.1182/blood-2009-08-238709.
Pełny tekst źródłaMalinin, Nikolay L., Edward F. Plow i Tatiana V. Byzova. "Kindlins in FERM adhesion". Blood 115, nr 20 (20.05.2010): 4011–17. http://dx.doi.org/10.1182/blood-2009-10-239269.
Pełny tekst źródłaMeller, Julia, Igor B. Rogozin, Eugenia Poliakov, Nahum Meller, Mark Bedanov-Pack, Edward F. Plow, Jun Qin, Eugene A. Podrez i Tatiana V. Byzova. "Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness". Molecular Biology of the Cell 26, nr 4 (15.02.2015): 786–96. http://dx.doi.org/10.1091/mbc.e14-08-1294.
Pełny tekst źródłaArnold, M., S. Rehart, M. Sauerbier, C. Biehl, C. Heck, U. Müller-Ladner i E. Neumann. "POS1035 FOCAL ADHESION PROTEINS KINDLIN-1, -2 AND TALIN-1 ARE REGULATED IN IL-1Β-STIMULATED RHEUMATOID ARTHRITIS SYNOVIAL FIBROBLASTS". Annals of the Rheumatic Diseases 82, Suppl 1 (30.05.2023): 835.1–835. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3477.
Pełny tekst źródłaTan, Hui-Foon, i Suet-Mien Tan. "The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation". Journal of Biological Chemistry 295, nr 18 (13.03.2020): 5928–43. http://dx.doi.org/10.1074/jbc.ra120.012954.
Pełny tekst źródłaSun, Jiaojiao, Desheng Xiao, Yuan Ni, Tianlong Zhang, Zhongyuan Cao, Zhou Xu, Huong Nguyen i in. "Structure basis of the FERM domain of kindlin-3 in supporting integrin αIIbβ3 activation in platelets". Blood Advances 4, nr 13 (10.07.2020): 3128–35. http://dx.doi.org/10.1182/bloodadvances.2020001575.
Pełny tekst źródłaPluskota, Elzbieta, James J. Dowling, Natalie Gordon, Jeffrey A. Golden, Dorota Szpak, XiaoXia Z. West, Carla Nestor i in. "The integrin coactivator Kindlin-2 plays a critical role in angiogenesis in mice and zebrafish". Blood 117, nr 18 (5.05.2011): 4978–87. http://dx.doi.org/10.1182/blood-2010-11-321182.
Pełny tekst źródłaGodbout, Elena, Dong Ok Son, Stephanie Hume, Stellar Boo, Vincent Sarrazy, Sophie Clément, Andras Kapus i in. "Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts". Cells 9, nr 12 (17.12.2020): 2702. http://dx.doi.org/10.3390/cells9122702.
Pełny tekst źródłaPluskota, Elzbieta, Dorota Szpak, Katarzyna Bialkowska, Kamila Bledzka i Edward F. Plow. "Kindlin-2 Maintains Vascular Barrier Integrity By Stabilizing Endothelial Adherens Junctions". Blood 126, nr 23 (3.12.2015): 3452. http://dx.doi.org/10.1182/blood.v126.23.3452.3452.
Pełny tekst źródłaPluskota, Elzbieta, James J. Dowling, Natalie Gordon, Jeffrey A. Golden, Dorota Szpak, XiaoXia Zhang, Carla Nestor i in. "The Integrin Co-Activator Kindlin-2 Plays a Critical Role In Angiogenesis and Blood Vessel Integrity". Blood 116, nr 21 (19.11.2010): 4. http://dx.doi.org/10.1182/blood.v116.21.4.4.
Pełny tekst źródłaChen, Weiguo, Yulia Epshtein, Christen Vagts, Anne E. Cress i Jeffrey R. Jacobson. "Increased Kindlin-2 via SMURF1 Inhibition Attenuates Endothelial Permeability and Acute Lung Injury". International Journal of Molecular Sciences 26, nr 5 (22.02.2025): 1880. https://doi.org/10.3390/ijms26051880.
Pełny tekst źródłaWei, Xiaofan, Xiang Wang, Yang Xia, Yan Tang, Feng Li, Weigang Fang i Hongquan Zhang. "Kindlin-2 regulates renal tubular cell plasticity by activation of Ras and its downstream signaling". American Journal of Physiology-Renal Physiology 306, nr 2 (15.01.2014): F271—F278. http://dx.doi.org/10.1152/ajprenal.00499.2013.
Pełny tekst źródłaHuang, Shaobin, Wuguo Deng, Peng Wang, Yue Yan, Chuanbo Xie, Xiaoling Cao, Miao Chen i in. "Fermitin family member 2 promotes melanoma progression by enhancing the binding of p-α-Pix to Rac1 to activate the MAPK pathway". Oncogene 40, nr 37 (28.07.2021): 5626–38. http://dx.doi.org/10.1038/s41388-021-01954-8.
Pełny tekst źródłaBledzka, Kamila, Katarzyna Bialkowska, Khalid Sossey-Alaoui, Julia Vaynberg, Elzbieta Pluskota, Jun Qin i Edward F. Plow. "Kindlin-2 directly binds actin and regulates integrin outside-in signaling". Journal of Cell Biology 213, nr 1 (4.04.2016): 97–108. http://dx.doi.org/10.1083/jcb.201501006.
Pełny tekst źródłaWei, Xiaofan, Xiang Wang, Jun Zhan, Yuhan Chen, Weigang Fang, Lingqiang Zhang i Hongquan Zhang. "Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation". Journal of Cell Biology 216, nr 5 (13.04.2017): 1455–71. http://dx.doi.org/10.1083/jcb.201609073.
Pełny tekst źródłaNelson, Colin, Daniel Hernandez-Cortes, Kendra D. Marr, Jaime MC Gard, Allan I. Paxson, William L. Harryman, Natalya K. Seppanen, John M. Ryniawec i Anne E. Cress. "Abstract 5418: Lamellipodial protrusions induced by hypoxia depend upon kindlin-2 in prostate cancer cells". Cancer Research 84, nr 6_Supplement (22.03.2024): 5418. http://dx.doi.org/10.1158/1538-7445.am2024-5418.
Pełny tekst źródłaWang, Wei, Priyanka S. Rana, Akram Alkrekshi, Katarzyna Bialkowska, Vesna Markovic, William P. Schiemann, Edward F. Plow, Elzbieta Pluskota i Khalid Sossey-Alaoui. "Targeted Deletion of Kindlin-2 in Mouse Mammary Glands Inhibits Tumor Growth, Invasion, and Metastasis Downstream of a TGF-β/EGF Oncogenic Signaling Pathway". Cancers 14, nr 3 (27.01.2022): 639. http://dx.doi.org/10.3390/cancers14030639.
Pełny tekst źródłaMoslem, Mohsen, Reto Eggenschwiler, Christian Wichmann, Raymund Buhmann, Tobias Cantz i Reinhard Henschler. "Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells". Stem Cells International 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/7316354.
Pełny tekst źródłaHernandez-Cortes, Daniel, Jaime M. C. Gard, Beatrice S. Knudsen, Noel A. Warfel i Anne E. Cress. "Abstract 3835: Kindlin-2 complexes containing α6β1 integrin are responsive to hypoxia". Cancer Research 82, nr 12_Supplement (15.06.2022): 3835. http://dx.doi.org/10.1158/1538-7445.am2022-3835.
Pełny tekst źródłaYeon, Minjeong, Irene Bertolini i Dario C. Altieri. "Abstract 1276: Kindlin-2: a novel target of Parkin regulating cancer metastasis". Cancer Research 84, nr 6_Supplement (22.03.2024): 1276. http://dx.doi.org/10.1158/1538-7445.am2024-1276.
Pełny tekst źródłaGuo, Ling, Ting Cai, Keng Chen, Rong Wang, Jiaxin Wang, Chunhong Cui, Jifan Yuan i in. "Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ". Journal of Cell Biology 217, nr 4 (1.03.2018): 1431–51. http://dx.doi.org/10.1083/jcb.201612177.
Pełny tekst źródłaRana, Priyanka, Wei Wang, Akram Alkrekchi, Katarzyna Bialkowska, Vesna Markovic, Edward F. Plow, Elzbieta Pluskota i Khalid Sossey-Alaoui. "Abstract P1-06-02: Targeted deletion of Kindlin-2 in mouse mammary glands inhibits tumor growth, invasion and metastasis downstream of TGF-β/EGF oncogenic signaling pathway". Cancer Research 82, nr 4_Supplement (15.02.2022): P1–06–02—P1–06–02. http://dx.doi.org/10.1158/1538-7445.sabcs21-p1-06-02.
Pełny tekst źródłaBialkowska, Katarzyna, Eugene Podrez, Tatiana V. Byzova i Edward F. Plow. "Agonist-Induced Kindlin-3 Phsphorylation Regulates αIIbβ3 Integrin Activation In HEL Cells and Platelets". Blood 122, nr 21 (15.11.2013): 22. http://dx.doi.org/10.1182/blood.v122.21.22.22.
Pełny tekst źródłaBöttcher, Ralph T., Maik Veelders, Pascaline Rombaut, Jan Faix, Marina Theodosiou, Theresa E. Stradal, Klemens Rottner, Roy Zent, Franz Herzog i Reinhard Fässler. "Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading". Journal of Cell Biology 216, nr 11 (14.09.2017): 3785–98. http://dx.doi.org/10.1083/jcb.201701176.
Pełny tekst źródłaPluskota, Elzbieta, Yi Ma, Kamila M. Bledzka, Katarzyna Bialkowska, Dmitry A. Soloviev, Dorota Szpak, Eugene A. Podrez i in. "Kindlin-2 regulates hemostasis by controlling endothelial cell–surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism". Blood 122, nr 14 (3.10.2013): 2491–99. http://dx.doi.org/10.1182/blood-2013-04-497669.
Pełny tekst źródłaBandyopadhyay, A., G. Rothschild, S. Kim, D. A. Calderwood i S. Raghavan. "Functional differences between kindlin-1 and kindlin-2 in keratinocytes". Journal of Cell Science 125, nr 9 (10.02.2012): 2172–84. http://dx.doi.org/10.1242/jcs.096214.
Pełny tekst źródłaLiao, Zhongji, Hisashi Kato, Manjula Pandey, Joseph M. Cantor, Ararat J. Ablooglu, Mark H. Ginsberg i Sanford J. Shattil. "Interaction of kindlin-2 with integrin β3 promotes outside-in signaling responses by the αVβ3 vitronectin receptor". Blood 125, nr 12 (19.03.2015): 1995–2004. http://dx.doi.org/10.1182/blood-2014-09-603035.
Pełny tekst źródłaMody, I., P. K. Stanton i U. Heinemann. "Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling". Journal of Neurophysiology 59, nr 3 (1.03.1988): 1033–54. http://dx.doi.org/10.1152/jn.1988.59.3.1033.
Pełny tekst źródłaMa, Yan-Qing, Jun Qin, Chuanyue Wu i Edward F. Plow. "Kindlin-2 (Mig-2): a co-activator of β3 integrins". Journal of Cell Biology 181, nr 3 (5.05.2008): 439–46. http://dx.doi.org/10.1083/jcb.200710196.
Pełny tekst źródłaAttwaters, Michael. "Kindlin-2 reduces IVD inflammation". Nature Reviews Rheumatology 18, nr 3 (31.01.2022): 125. http://dx.doi.org/10.1038/s41584-022-00753-z.
Pełny tekst źródłaYe, Xi, i Kim A. Dora. "The kindlin-2 double act". Journal of Physiology 595, nr 20 (13.09.2017): 6371. http://dx.doi.org/10.1113/jp275082.
Pełny tekst źródłaShan, Ping, Jilong Zhang, Yulan Gou, Lijun Luo i Suiqiang Zhu. "Chaihu plus Longgu Muli Decoction Alleviated Brain Injury in Pentylenetetrazole-Kindled Epileptic Mice by Regulating Cyclooxygenase-2/Prostaglandin E2/Multidrug Transporter Pathway". BioMed Research International 2021 (29.03.2021): 1–10. http://dx.doi.org/10.1155/2021/6652195.
Pełny tekst źródłaManevich-Mendelson, Eugenia, Sara W. Feigelson, Ronit Pasvolsky, Memet Aker, Valentin Grabovsky, Ziv Shulman, Sara Sebnem Kilic i in. "Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions". Blood 114, nr 11 (10.09.2009): 2344–53. http://dx.doi.org/10.1182/blood-2009-04-218636.
Pełny tekst źródłaZhan, Jun, Xiang Zhu, Yongqing Guo, Yunling Wang, Yuxiang Wang, Guangliang Qiang, Miaomiao Niu i in. "Opposite Role of Kindlin-1 and Kindlin-2 in Lung Cancers". PLoS ONE 7, nr 11 (29.11.2012): e50313. http://dx.doi.org/10.1371/journal.pone.0050313.
Pełny tekst źródłaXiccato, G., A. Trocino, C. Boiti i G. Brecchia. "Reproductive rhythm and litter weaning age as they affect rabbit doe performance and body energy balance". Animal Science 81, nr 2 (październik 2005): 289–96. http://dx.doi.org/10.1079/asc50270289.
Pełny tekst źródłaJalilifar, Mostafa, Ali Yadollahpour, Ahmad Ali Moazedi i Zohreh Ghotbeddin. "Low Frequency Electrical Stimulation Either Prior to Or after Rapid Kindling Stimulation Inhibits the Kindling-Induced Epileptogenesis". BioMed Research International 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8623743.
Pełny tekst źródłaMatsuura, S., K. Hirayama i R. Murata. "Enhancement of synaptic facilitation during the progression of kindling epilepsy by amygdala stimulations". Journal of Neurophysiology 70, nr 2 (1.08.1993): 602–9. http://dx.doi.org/10.1152/jn.1993.70.2.602.
Pełny tekst źródłaMia, Md Saimon, Yagna Jarajapu, Reena Rao i Sijo Mathew. "Integrin β1 Promotes Pancreatic Tumor Growth by Upregulating Kindlin-2 and TGF-β Receptor-2". International Journal of Molecular Sciences 22, nr 19 (30.09.2021): 10599. http://dx.doi.org/10.3390/ijms221910599.
Pełny tekst źródłaBrunner, Molly, Angélique Millon-Frémillon, Genevieve Chevalier, Inaam A. Nakchbandi, Deane Mosher, Marc R. Block, Corinne Albigès-Rizo i Daniel Bouvard. "Osteoblast mineralization requires β1 integrin/ICAP-1–dependent fibronectin deposition". Journal of Cell Biology 194, nr 2 (18.07.2011): 307–22. http://dx.doi.org/10.1083/jcb.201007108.
Pełny tekst źródłaZai, Neelum A. Yousaf, Lamyae El Khalki, Wei Wang, Justin Szpendyk i Khalid Sossey-Alaoui. "Abstract 4381: Role of Kindlin-2 in the regulation of integrins and TBR1 signaling in TNBC". Cancer Research 84, nr 6_Supplement (22.03.2024): 4381. http://dx.doi.org/10.1158/1538-7445.am2024-4381.
Pełny tekst źródłaAndreeva-Gateva, P., D. Bakalov, Z. Sabit i B. Tenchov. "Effects of Ketogenic Diet on Corneal Kindling Mouse Model". Acta Medica Bulgarica 47, nr 2 (1.07.2020): 7–11. http://dx.doi.org/10.2478/amb-2020-0015.
Pełny tekst źródłaMishchenko, Mariia, Sergiy Shtrygol’, Andrii Lozynskyi, Mykhailo Hoidyk, Dmytro Khyluk, Tatyana Gorbach i Roman Lesyk. "Evaluation of 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone (Les-6222) as Potential Anticonvulsant Agent". Scientia Pharmaceutica 90, nr 3 (19.09.2022): 56. http://dx.doi.org/10.3390/scipharm90030056.
Pełny tekst źródłaChen, Zhefeng, Kai Shen, Ziyang Zheng, Jinchun Zhou, Shujie Zhao, Huanghe Song, Jiuxiang Liu, Xuan Zhao, Feng Liu i Qiang Zuo. "Kindlin-2 Promotes Chondrogenesis and Ameliorates IL-1beta-Induced Inflammation in Chondrocytes Cocultured with BMSCs in the Direct Contact Coculture System". Oxidative Medicine and Cellular Longevity 2022 (12.04.2022): 1–13. http://dx.doi.org/10.1155/2022/3156245.
Pełny tekst źródłaSchloemer, Nathan J., Alex M. Abel, Monica S. Thakar, Yan-Qing Ma i Subramaniam Malarkannan. "Impact of Kindlin-3 in NK Cell-Mediated Anti-Tumor Cytotoxicity and Inflammatory Cytokine Production". Blood 126, nr 23 (3.12.2015): 208. http://dx.doi.org/10.1182/blood.v126.23.208.208.
Pełny tekst źródłaMontanez, E., S. Ussar, M. Schifferer, M. Bosl, R. Zent, M. Moser i R. Fassler. "Kindlin-2 controls bidirectional signaling of integrins". Genes & Development 22, nr 10 (15.05.2008): 1325–30. http://dx.doi.org/10.1101/gad.469408.
Pełny tekst źródłaNeugebauer, Volker, Fatiha Zinebi, Rex Russell, Joel P. Gallagher i Patricia Shinnick-Gallagher. "Cocaine and Kindling Alter the Sensitivity of Group II and III Metabotropic Glutamate Receptors in the Central Amygdala". Journal of Neurophysiology 84, nr 2 (1.08.2000): 759–70. http://dx.doi.org/10.1152/jn.2000.84.2.759.
Pełny tekst źródłaNayden, Naydenov, i Ivanov Andrei. "P-183 Kindlin 1and Kindlin 2 Regulate Adhesion and Migration of Colonic Epithelial Cells". Inflammatory Bowel Diseases 20 (grudzień 2014): S100—S101. http://dx.doi.org/10.1097/01.mib.0000456902.63774.1b.
Pełny tekst źródłaAleshin, Vasily A., Anastasia V. Graf, Artem V. Artiukhov, Alexander L. Ksenofontov, Lev G. Zavileyskiy, Maria V. Maslova i Victoria I. Bunik. "Pentylenetetrazole-Induced Seizures Are Increased after Kindling, Exhibiting Vitamin-Responsive Correlations to the Post-Seizures Behavior, Amino Acids Metabolism and Key Metabolic Regulators in the Rat Brain". International Journal of Molecular Sciences 24, nr 15 (3.08.2023): 12405. http://dx.doi.org/10.3390/ijms241512405.
Pełny tekst źródła