Artykuły w czasopismach na temat „Land-based learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Land-based learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bae-Dimitriadis, Michelle. "Land-Based Art Criticism: (Un)learning Land Through Art." Visual Arts Research 47, no. 2 (2021): 102–14. http://dx.doi.org/10.5406/visuartsrese.47.2.0102.
Pełny tekst źródłaLing, Feng, Yihang Zhang, Giles M. Foody, et al. "Learning-Based Superresolution Land Cover Mapping." IEEE Transactions on Geoscience and Remote Sensing 54, no. 7 (2016): 3794–810. http://dx.doi.org/10.1109/tgrs.2016.2527841.
Pełny tekst źródłaSpillett, Tasha. "Gender, Land, and Place: Considering Gender within Land-Based and Place-Based Learning." Journal for the Study of Religion, Nature and Culture 15, no. 1 (2021): 11–31. http://dx.doi.org/10.1558/jsrnc.39094.
Pełny tekst źródłaRajeshyam Konka, Prakash. "Deep Learning for Land Use and Land Cover Classification Based on Optical Earth Observation Data: A Comprehensive Review." International Journal of Science and Research (IJSR) 13, no. 9 (2024): 1559–63. http://dx.doi.org/10.21275/sr24926074847.
Pełny tekst źródłaPal, Mahesh. "Extreme‐learning‐machine‐based land cover classification." International Journal of Remote Sensing 30, no. 14 (2009): 3835–41. http://dx.doi.org/10.1080/01431160902788636.
Pełny tekst źródłaMcKim, Aaron J., Abbey Palmer, Robert McKendree, Phillip Warsaw, and James DeDecker. "Evaluating land-based learning as a pedagogical approach." Journal of Agricultural Education 65, no. 3 (2024): 292–303. https://doi.org/10.5032/jae.v65i3.2767.
Pełny tekst źródłaSanderson, Darlene, Noeman Mirza, and Heather Correale. "Indigenous Land-Based Experiential Learning in Nursing Education." Journal of Nursing Education 59, no. 12 (2020): 721. http://dx.doi.org/10.3928/01484834-20201118-12.
Pełny tekst źródłaBorrows, John. "OUTSIDER EDUCATION: INDIGENOUS LAW AND LAND-BASED LEARNING." Windsor Yearbook of Access to Justice 33, no. 1 (2017): 1. http://dx.doi.org/10.22329/wyaj.v33i1.4807.
Pełny tekst źródłaIngram, Rebekah R., Ryan T. Ransom, and Kahente Horn-Miller. "O’nónna: A Curriculum for Land-Based Language Learning." Canadian Journal of Applied Linguistics 27, no. 2 (2024): 1–25. https://doi.org/10.37213/cjal.2024.34534.
Pełny tekst źródłaCoiacetto, Eddo. "Learning from project based learning: a land development studio account of practice." Australian Planner 45, no. 4 (2008): 28–34. http://dx.doi.org/10.1080/07293682.2008.10753388.
Pełny tekst źródłaAbdullah, Azween, Daniel Arockiam, and Valliappan Raju. "Gradient based optimizer with deep learning based agricultural land use and land cover classification on SAR data." Journal of Infrastructure, Policy and Development 8, no. 8 (2024): 4488. http://dx.doi.org/10.24294/jipd.v8i8.4488.
Pełny tekst źródłaZhang, Kai, Chengquan Hu, and Hang Yu. "Remote Sensing Image Land Classification Based on Deep Learning." Scientific Programming 2021 (December 24, 2021): 1–12. http://dx.doi.org/10.1155/2021/6203444.
Pełny tekst źródłaRahmati, Omid, Fatemeh Falah, Seyed Amir Naghibi, et al. "Land subsidence modelling using tree-based machine learning algorithms." Science of The Total Environment 672 (July 2019): 239–52. http://dx.doi.org/10.1016/j.scitotenv.2019.03.496.
Pełny tekst źródłaKong, In-Hak, Dong-Hoon Jeong, and Gu-Ha Jeong. "Development of Deep Learning-based Land Monitoring Web Service." Journal of Society of Korea Industrial and Systems Engineering 46, no. 3 (2023): 275–84. http://dx.doi.org/10.11627/jksie.2023.46.3.275.
Pełny tekst źródłaHeidari, Pooya, Asghar Milan, and Alireza Gharagozlou. "Land Cover and Land Use Extraction Based on Deep Learning Methods Using Satellite Images." Journal of Geomatics Science and Technology 14, no. 2 (2024): 119–33. https://doi.org/10.61186/jgst.14.2.119.
Pełny tekst źródłaAshish V. Nimavat. "A NOVEL TRANSFER LEARNING BASED DEEP MODEL FOR LAND CLASSIFICATION." Journal of Electrical Systems 20, no. 3 (2024): 2089–96. http://dx.doi.org/10.52783/jes.4008.
Pełny tekst źródłaRajesh, S., T. Gladima Nisia, S. Arivazhagan, and R. Abisekaraj. "Land Cover/Land Use Mapping of LISS IV Imagery Using Object-Based Convolutional Neural Network with Deep Features." Journal of the Indian Society of Remote Sensing 48, no. 1 (2019): 145–54. http://dx.doi.org/10.1007/s12524-019-01064-9.
Pełny tekst źródłaAggarwal, Kajal. "Machine Learning-Based Soil Classification." Mathematical Statistician and Engineering Applications 70, no. 1 (2021): 340–47. http://dx.doi.org/10.17762/msea.v70i1.2316.
Pełny tekst źródłaKussul, Nataliya N., Nikolay S. Lavreniuk, Andrey Yu Shelestov, Bogdan Ya Yailymov, and Igor N. Butko. "Land Cover Changes Analysis Based on Deep Machine Learning Technique." Journal of Automation and Information Sciences 48, no. 5 (2016): 42–54. http://dx.doi.org/10.1615/jautomatinfscien.v48.i5.40.
Pełny tekst źródłaSun, Lijiao, Meng Xi, Zhengjian Li, Ziqiang Huo, Jiabao Wen, and Jiachen Yang. "Geospatial indexing for sea–land navigation based on machine learning." Computers and Electrical Engineering 118 (September 2024): 109433. http://dx.doi.org/10.1016/j.compeleceng.2024.109433.
Pełny tekst źródłaRodrigues, Thanan, Frederico Takahashi, Arthur Dias, Taline Lima, and Enner Alcântara. "Machine Learning-Based Cerrado Land Cover Classification Using PlanetScope Imagery." Remote Sensing 17, no. 3 (2025): 480. https://doi.org/10.3390/rs17030480.
Pełny tekst źródłaDelgado, Tellez Ricardo, Wang Shaohua, Zhong Ershun, Cai Wenwen, and Long Liang. "Competitive Learning Approach to GIS Based Land Use Suitability Analysis." Journal of Resources and Ecology 7, no. 6 (2016): 430–37. http://dx.doi.org/10.5814/j.issn.1674-764x.2016.06.003.
Pełny tekst źródłaHosseinzadeh, Elham, Sara Anamaghi, Massoud Behboudian, and Zahra Kalantari. "Evaluating Machine Learning-Based Approaches in Land Subsidence Susceptibility Mapping." Land 13, no. 3 (2024): 322. http://dx.doi.org/10.3390/land13030322.
Pełny tekst źródłaKim, Jungsun, Jaewoong Won, Hyeongsoon Kim, and Joonghyeok Heo. "Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea." Sustainability 13, no. 23 (2021): 13088. http://dx.doi.org/10.3390/su132313088.
Pełny tekst źródłaKim, Yeseul, No-Wook Park, and Kyung-Do Lee. "Self-Learning Based Land-Cover Classification Using Sequential Class Patterns from Past Land-Cover Maps." Remote Sensing 9, no. 9 (2017): 921. http://dx.doi.org/10.3390/rs9090921.
Pełny tekst źródłaHediyalad, Gangamma, K. Ashoka, Govardhan Hegade, Pratibha Ganapati Gaonkar, Azizkhan F. Pathan, and Pratibhaa R. Malagatti. "A comprehensive survey exploring the application of machine learning algorithms in the detection of land degradation." Journal of Degraded and Mining Lands Management 11, no. 4 (2024): 6471–88. http://dx.doi.org/10.15243/jdmlm.2024.114.6471.
Pełny tekst źródłaTariku, Girma, Isabella Ghiglieno, Andres Sanchez Morchio, et al. "Deep-Learning-Based Land Cover Mapping in Franciacorta Wine Growing Area." Applied Sciences 15, no. 2 (2025): 871. https://doi.org/10.3390/app15020871.
Pełny tekst źródłaKalita, Indrajit, Runku Nikhil Sai Kumar, and Moumita Roy. "Deep Learning-Based Cross-Sensor Domain Adaptation Under Active Learning for Land Cover Classification." IEEE Geoscience and Remote Sensing Letters 19 (2022): 1–5. http://dx.doi.org/10.1109/lgrs.2021.3130285.
Pełny tekst źródłaKavhu, Blessing, Zama Eric Mashimbye, and Linda Luvuno. "Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning." Remote Sensing 13, no. 24 (2021): 5054. http://dx.doi.org/10.3390/rs13245054.
Pełny tekst źródłaJeong, Bongseok, Sunmin Lee, and Moung-jin Lee. "Classification of Subdivision Land Use and Land Cover Using Deep Learning Models." GEO DATA 6, no. 4 (2024): 535–51. https://doi.org/10.22761/gd.2024.0059.
Pełny tekst źródłaLi, Chengqiang, Junxiao Wang, Liang Ge, Yujie Zhou, and Shenglu Zhou. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction." International Journal of Environmental Research and Public Health 19, no. 13 (2022): 7781. http://dx.doi.org/10.3390/ijerph19137781.
Pełny tekst źródłaVali, Ava, Sara Comai, and Matteo Matteucci. "Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review." Remote Sensing 12, no. 15 (2020): 2495. http://dx.doi.org/10.3390/rs12152495.
Pełny tekst źródłaSurana, Priya, Bhagwan Phulpagar, and Pramod Patil. "Fastai and Convolutional Neural Network Based Land Cover Classification." E3S Web of Conferences 405 (2023): 04044. http://dx.doi.org/10.1051/e3sconf/202340504044.
Pełny tekst źródłaSertel, Elif, Burak Ekim, Paria Ettehadi Osgouei, and M. Erdem Kabadayi. "Land Use and Land Cover Mapping Using Deep Learning Based Segmentation Approaches and VHR Worldview-3 Images." Remote Sensing 14, no. 18 (2022): 4558. http://dx.doi.org/10.3390/rs14184558.
Pełny tekst źródłaVali, Ava, Sara Comai, and Matteo Matteucci. "An Automated Machine Learning Framework for Adaptive and Optimized Hyperspectral-Based Land Cover and Land-Use Segmentation." Remote Sensing 16, no. 14 (2024): 2561. http://dx.doi.org/10.3390/rs16142561.
Pełny tekst źródłaIrfan, Ayesha, Yu Li, Xinhua E, and Guangmin Sun. "Land Use and Land Cover Classification with Deep Learning-Based Fusion of SAR and Optical Data." Remote Sensing 17, no. 7 (2025): 1298. https://doi.org/10.3390/rs17071298.
Pełny tekst źródłaDatta, Ranjan, Rajmoni Singha, and Margot Hurlbert. "Indigenous Land-Based Perspectives on Environmental Sustainability: Learning from the Khasis Indigenous Community in Bangladesh." Sustainability 16, no. 9 (2024): 3678. http://dx.doi.org/10.3390/su16093678.
Pełny tekst źródłaAlshari, Eman A., and Bharti W. Gawali. "Analysis of Machine Learning Techniques for Sentinel-2A Satellite Images." Journal of Electrical and Computer Engineering 2022 (May 16, 2022): 1–16. http://dx.doi.org/10.1155/2022/9092299.
Pełny tekst źródłaRimba, Andi Besse, Andi Arumansawang, I. Putu Wira Utama, et al. "Cloud-Based Machine Learning for Flood Policy Recommendations in Makassar City, Indonesia." Water 15, no. 21 (2023): 3783. http://dx.doi.org/10.3390/w15213783.
Pełny tekst źródłaGao, Lianru, Yiqun He, Xu Sun, Xiuping Jia, and Bing Zhang. "Incorporating Negative Sample Training for Ship Detection Based on Deep Learning." Sensors 19, no. 3 (2019): 684. http://dx.doi.org/10.3390/s19030684.
Pełny tekst źródłaAristin, Nevy Farista, Budijanto Budijanto, Didik Taryana, and I. Nyoman Ruja. "3D Map of Dry Land Use Based Aerial Image as Learning Media in Era of Education 4.0." International Journal of Emerging Technologies in Learning (iJET) 15, no. 07 (2020): 171. http://dx.doi.org/10.3991/ijet.v15i07.13327.
Pełny tekst źródłaZhao, Shengyu, Kaiwen Tu, Shutong Ye, Hao Tang, Yaocong Hu, and Chao Xie. "Land Use and Land Cover Classification Meets Deep Learning: A Review." Sensors 23, no. 21 (2023): 8966. http://dx.doi.org/10.3390/s23218966.
Pełny tekst źródłaDe Finney, Sandrina, Sarah Wright Cardinal, Morgan Mowatt та ін. "ȻENTOL TŦE TEṈEW̱ (TOGETHER WITH THE LAND)". International Journal of Child, Youth and Family Studies 11, № 3 (2020): 34–55. http://dx.doi.org/10.18357/ijcyfs113202019698.
Pełny tekst źródłaRazafinimaro, Arisetra, Aimé Richard Hajalalaina, Hasina Rakotonirainy, and Reziky Zafimarina. "Land cover classification based optical satellite images using machine learning algorithms." International Journal of Advances in Intelligent Informatics 8, no. 3 (2022): 362. http://dx.doi.org/10.26555/ijain.v8i3.803.
Pełny tekst źródłaAlali, Dhufr Hussein, and Timur Inan. "A Decision Support System Based on Machine Learning for Land Investment." Journal of Education and Science 32, no. 4 (2023): 34–47. http://dx.doi.org/10.33899/edusj.2023.141005.1375.
Pełny tekst źródłaJamali, Ali. "Land use land cover mapping using advanced machine learning classifiers." Ekológia (Bratislava) 40, no. 3 (2021): 286–300. http://dx.doi.org/10.2478/eko-2021-0031.
Pełny tekst źródłaWang, Yue, Wanshun Zhang, Xin Liu, et al. "A Deep Learning Method for Land Use Classification Based on Feature Augmentation." Remote Sensing 17, no. 8 (2025): 1398. https://doi.org/10.3390/rs17081398.
Pełny tekst źródłaMøller, Anders Bjørn, Vera Leatitia Mulder, Gerard B. M. Heuvelink, Niels Mark Jacobsen, and Mogens Humlekrog Greve. "Can We Use Machine Learning for Agricultural Land Suitability Assessment?" Agronomy 11, no. 4 (2021): 703. http://dx.doi.org/10.3390/agronomy11040703.
Pełny tekst źródłaWesti, Utami, Sugiyanto Catur, and Rahardjo Noorhadi. "Artificial intelligence in land use prediction modeling: a review." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 3 (2024): 2514–23. https://doi.org/10.11591/ijai.v13.i3.pp2514-2523.
Pełny tekst źródłaHu, Wenyi, Xiaomeng Jiang, Jiawei Tian, Shitong Ye, and Shan Liu. "Land Target Detection Algorithm in Remote Sensing Images Based on Deep Learning." Land 14, no. 5 (2025): 1047. https://doi.org/10.3390/land14051047.
Pełny tekst źródła