Gotowa bibliografia na temat „Lattice theory”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Lattice theory”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Lattice theory"
Day, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, nr 2 (1.04.1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Pełny tekst źródłaHarremoës, Peter. "Entropy Inequalities for Lattices". Entropy 20, nr 10 (12.10.2018): 784. http://dx.doi.org/10.3390/e20100784.
Pełny tekst źródłaFlaut, Cristina, Dana Piciu i Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, nr 4 (18.04.2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Pełny tekst źródłaMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup". Journal of Group Theory 21, nr 3 (1.05.2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Pełny tekst źródłaJežek, J., P. PudláK i J. Tůma. "On equational theories of semilattices with operators". Bulletin of the Australian Mathematical Society 42, nr 1 (sierpień 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Pełny tekst źródłaBallal, Sachin, i Vilas Kharat. "Zariski topology on lattice modules". Asian-European Journal of Mathematics 08, nr 04 (17.11.2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Pełny tekst źródłaJežek, Jaroslav, i George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories". Journal of Symbolic Logic 60, nr 4 (grudzień 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Pełny tekst źródłaFuta, Yuichi, i Yasunari Shidama. "Lattice of ℤ-module". Formalized Mathematics 24, nr 1 (1.03.2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Pełny tekst źródłaBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices". Nuclear Physics B - Proceedings Supplements 30 (marzec 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Pełny tekst źródłaJANSEN, KARL. "LATTICE FIELD THEORY". International Journal of Modern Physics E 16, nr 09 (październik 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Pełny tekst źródłaRozprawy doktorskie na temat "Lattice theory"
Race, David M. (David Michael). "Consistency in Lattices". Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Pełny tekst źródłaRadu, Ion. "Stone's representation theorem". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Pełny tekst źródłaEndres, Michael G. "Topics in lattice field theory /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Pełny tekst źródłaBowman, K. "A lattice theory for algebras". Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Pełny tekst źródłaMichels, Amanda Therese. "Aspects of lattice gauge theory". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Pełny tekst źródłaBuckle, John Francis. "Computational aspects of lattice theory". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Pełny tekst źródłaCraig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices". Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Pełny tekst źródłaPugh, David John Rhydwyn. "Topological structures in lattice gauge theory". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Pełny tekst źródłaSchaich, David. "Strong dynamics and lattice gauge theory". Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Pełny tekst źródłaIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. "Density functional theory on a lattice". kostenfrei, 2009. http://d-nb.info/998385956/34.
Pełny tekst źródłaKsiążki na temat "Lattice theory"
Bunk, B., K. H. Mütter i K. Schilling, red. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Pełny tekst źródłaGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Pełny tekst źródłaGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Pełny tekst źródłaservice), SpringerLink (Online, red. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Znajdź pełny tekst źródłaStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Znajdź pełny tekst źródłaKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Znajdź pełny tekst źródłaSatz, Helmut, Isabel Harrity i Jean Potvin, red. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Pełny tekst źródłaH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division. i International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), red. Lattice gauge theory '86. New York: Plenum Press, 1987.
Znajdź pełny tekst źródłaos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Lattice theory"
Zheng, Zhiyong, Kun Tian i Fengxia Liu. "Random Lattice Theory". W Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Pełny tekst źródłaAl-Haj Baddar, Sherenaz W., i Kenneth E. Batcher. "Lattice Theory". W Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Pełny tekst źródłaRitter, Gerhard X., i Gonzalo Urcid. "Lattice Theory". W Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Pełny tekst źródłaYadav, Santosh Kumar. "Lattice Theory". W Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Pełny tekst źródłaGrätzer, George. "Lattice Constructions". W Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Pełny tekst źródłaStone, Michael. "Lattice Field Theory". W Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Pełny tekst źródłaYanagihara, Ryosuke. "Lattice Field Theory". W Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Pełny tekst źródłaGrätzer, George. "First Concepts". W General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Pełny tekst źródłaGrätzer, George. "Distributive Lattices". W General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Pełny tekst źródłaGrätzer, George. "Congruences and Ideals". W General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Lattice theory"
Monahan, Christopher. "Automated Lattice Perturbation Theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Pełny tekst źródłaLambrou, Eliana, Luigi Del Debbio, R. D. Kenway i Enrico Rinaldi. "Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Pełny tekst źródłaBursa, F., i Michael Kroyter. "Lattice String Field Theory". W The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Pełny tekst źródłaKieburg, Mario, Jacobus Verbaarschot i Savvas Zafeiropoulos. "A classification of 2-dim Lattice Theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Pełny tekst źródłaShao, Yingchao, Li Fu, Fei Hao i Keyun Qin. "Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory". W 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Pełny tekst źródłaBietenholz, Wolfgang, Ivan Hip i David Landa-Marban. "Spectral Properties of a 2d IR Conformal Theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Pełny tekst źródłaZubkov, Mikhail. "Gauge theory of Lorentz group on the lattice". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Pełny tekst źródłaVeernala, Aarti, i Simon Catterall. "Four Fermion Interactions in Non Abelian Gauge Theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Pełny tekst źródłaBergner, Georg, Jens Langelage i Owe Philipsen. "Effective lattice theory for finite temperature Yang Mills". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Pełny tekst źródłaHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida i Michele Brambilla. "The Schrödinger Functional in Numerical Stochastic Perturbation Theory". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Pełny tekst źródłaRaporty organizacyjne na temat "Lattice theory"
McCune, W., i R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), marzec 1995. http://dx.doi.org/10.2172/510566.
Pełny tekst źródłaYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), czerwiec 1992. http://dx.doi.org/10.2172/10156563.
Pełny tekst źródłaYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), czerwiec 1992. http://dx.doi.org/10.2172/5082303.
Pełny tekst źródłaBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), listopad 2002. http://dx.doi.org/10.2172/808671.
Pełny tekst źródłaHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/6441616.
Pełny tekst źródłaHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/6590163.
Pełny tekst źródłaBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), kwiecień 2014. http://dx.doi.org/10.2172/1127446.
Pełny tekst źródłaNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), czerwiec 2012. http://dx.doi.org/10.2172/1165874.
Pełny tekst źródłaReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), maj 2008. http://dx.doi.org/10.2172/951263.
Pełny tekst źródłaCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), listopad 1988. http://dx.doi.org/10.2172/6530895.
Pełny tekst źródła