Artykuły w czasopismach na temat „LiDAR”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „LiDAR”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Glukhov, V. A., and Yu A. Goldin. "Marine profiling lidars and their application for oceanological problems." Fundamental and Applied Hydrophysics 17, no. 1 (2024): 104–28. http://dx.doi.org/10.59887/2073-6673.2024.17(1)-9.
Pełny tekst źródłaWang, Lihua, Michael J. Newchurch, Raul J. Alvarez II, et al. "Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns." Atmospheric Measurement Techniques 10, no. 10 (2017): 3865–76. http://dx.doi.org/10.5194/amt-10-3865-2017.
Pełny tekst źródłaNewman, Jennifer F., and Andrew Clifton. "An error reduction algorithm to improve lidar turbulence estimates for wind energy." Wind Energy Science 2, no. 1 (2017): 77–95. http://dx.doi.org/10.5194/wes-2-77-2017.
Pełny tekst źródłaWing, Robin, Sophie Godin-Beekmann, Wolfgang Steinbrecht, et al. "Evaluation of the new DWD ozone and temperature lidar during the Hohenpeißenberg Ozone Profiling Study (HOPS) and comparison of results with previous NDACC campaigns." Atmospheric Measurement Techniques 14, no. 5 (2021): 3773–94. http://dx.doi.org/10.5194/amt-14-3773-2021.
Pełny tekst źródłaNewchurch, Michael J., Raul J. Alvarez, Timothy A. Berkoff, et al. "TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns." EPJ Web of Conferences 176 (2018): 10007. http://dx.doi.org/10.1051/epjconf/201817610007.
Pełny tekst źródłaChaikovsky, Anatoli, Oleg Dubovik, Brent Holben, et al. "Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET." Atmospheric Measurement Techniques 9, no. 3 (2016): 1181–205. http://dx.doi.org/10.5194/amt-9-1181-2016.
Pełny tekst źródłaChaikovsky, A., O. Dubovik, B. Holben, et al. "Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET." Atmospheric Measurement Techniques Discussions 8, no. 12 (2015): 12759–822. http://dx.doi.org/10.5194/amtd-8-12759-2015.
Pełny tekst źródłaJie, Lu, Zhi Jin, Jinping Wang, Letian Zhang, and Xiaojun Tan. "A SLAM System with Direct Velocity Estimation for Mechanical and Solid-State LiDARs." Remote Sensing 14, no. 7 (2022): 1741. http://dx.doi.org/10.3390/rs14071741.
Pełny tekst źródłaK, Mr Pramod, and Akshay M C. "LIDAR Technology." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (2022): 2976–82. http://dx.doi.org/10.22214/ijraset.2022.43007.
Pełny tekst źródłaWang, Y., K. N. Sartelet, M. Bocquet, and P. Chazette. "Assimilation of ground versus lidar observations for PM<sub>10</sub> forecasting." Atmospheric Chemistry and Physics Discussions 12, no. 9 (2012): 23291–331. http://dx.doi.org/10.5194/acpd-12-23291-2012.
Pełny tekst źródłaKelberlau, Felix, Vegar Neshaug, Lasse Lønseth, Tania Bracchi, and Jakob Mann. "Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar." Remote Sensing 12, no. 5 (2020): 898. http://dx.doi.org/10.3390/rs12050898.
Pełny tekst źródłaChen, Yiyin, Wei Yu, Feng Guo, and Po Wen Cheng. "Adaptive measuring trajectory for scanning lidars: proof of concept." Journal of Physics: Conference Series 2265, no. 2 (2022): 022099. http://dx.doi.org/10.1088/1742-6596/2265/2/022099.
Pełny tekst źródłaYang, Shu, Fengchao Peng, Sibylle von Löwis, Guðrún Nína Petersen, and David Christian Finger. "Using Machine Learning Methods to Identify Particle Types from Doppler Lidar Measurements in Iceland." Remote Sensing 13, no. 13 (2021): 2433. http://dx.doi.org/10.3390/rs13132433.
Pełny tekst źródłaHu, Mingxuan, Yajun Pang, and Long Gao. "Advances in Silicon-Based Integrated Lidar." Sensors 23, no. 13 (2023): 5920. http://dx.doi.org/10.3390/s23135920.
Pełny tekst źródłaYin, Zhenping, Longlong Wang, Yun He, and Xuan Wang. "Understanding the Roles of Aerosols and Clouds in Environment, Meteorology and Climate with Advanced Lidar Remote Sensing Techniques." Remote Sensing 16, no. 3 (2024): 593. http://dx.doi.org/10.3390/rs16030593.
Pełny tekst źródłaAmodeo, Aldo, Giuseppe D’Amico, Aldo Giunta, et al. "ATHLI16: the ATHens Lidar Intercomparison campaign." EPJ Web of Conferences 176 (2018): 09008. http://dx.doi.org/10.1051/epjconf/201817609008.
Pełny tekst źródłaWang, Y., K. N. Sartelet, M. Bocquet, and P. Chazette. "Assimilation of ground versus lidar observations for PM<sub>10</sub> forecasting." Atmospheric Chemistry and Physics 13, no. 1 (2013): 269–83. http://dx.doi.org/10.5194/acp-13-269-2013.
Pełny tekst źródłaSteinbrecht, W., T. J. McGee, L. W. Twigg, et al. "Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE)." Atmospheric Measurement Techniques 2, no. 1 (2009): 125–45. http://dx.doi.org/10.5194/amt-2-125-2009.
Pełny tekst źródłaRobey, Rachel, and Julie K. Lundquist. "Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain." Wind Energy Science 9, no. 10 (2024): 1905–22. http://dx.doi.org/10.5194/wes-9-1905-2024.
Pełny tekst źródłaHildebrand, J., G. Baumgarten, J. Fiedler, et al. "Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere." Atmospheric Measurement Techniques Discussions 5, no. 3 (2012): 4123–56. http://dx.doi.org/10.5194/amtd-5-4123-2012.
Pełny tekst źródłaPeña, Alfredo, Jakob Mann, and Nikolay Dimitrov. "Turbulence characterization from a forward-looking nacelle lidar." Wind Energy Science 2, no. 1 (2017): 133–52. http://dx.doi.org/10.5194/wes-2-133-2017.
Pełny tekst źródłaTong, Yicheng, Sijie Chen, Da Xiao, et al. "Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks." Remote Sensing 14, no. 3 (2022): 626. http://dx.doi.org/10.3390/rs14030626.
Pełny tekst źródłaVasileiadis, George, Patrick Brun, Omar Gabella, et al. "Design and Development of a Raman Lidar for Cherenkov Gamma Array Experiments." EPJ Web of Conferences 237 (2020): 07006. http://dx.doi.org/10.1051/epjconf/202023707006.
Pełny tekst źródłaWu, Jianqing, Hao Xu, and Wei Liu. "Points Registration for Roadside LiDAR Sensors." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 9 (2019): 627–39. http://dx.doi.org/10.1177/0361198119843855.
Pełny tekst źródłaSteinmann Perez, Cedric D., Alan W. H. Lio, and Fanzhong Meng. "Analysis and evaluation of two reference LiDAR-assisted control designs for wind turbines." Journal of Physics: Conference Series 2767, no. 3 (2024): 032048. http://dx.doi.org/10.1088/1742-6596/2767/3/032048.
Pełny tekst źródłaSteinbrecht, W., T. J. McGee, L. W. Twigg, et al. "Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeissenberg Ozone Profiling Experiment (HOPE)." Atmospheric Measurement Techniques Discussions 2, no. 1 (2009): 37–86. http://dx.doi.org/10.5194/amtd-2-37-2009.
Pełny tekst źródłaZhang, Mingshi, Yubing Wang, Qian Hu, et al. "Phase-Modulated Continuous-Wave Coherent Ranging Method and Anti-Interference Evaluation." Applied Sciences 13, no. 9 (2023): 5356. http://dx.doi.org/10.3390/app13095356.
Pełny tekst źródłaWei, Weichen, Bijan Shirinzadeh, Rohan Nowell, Mohammadali Ghafarian, Mohamed M. A. Ammar, and Tianyao Shen. "Enhancing Solid State LiDAR Mapping with a 2D Spinning LiDAR in Urban Scenario SLAM on Ground Vehicles." Sensors 21, no. 5 (2021): 1773. http://dx.doi.org/10.3390/s21051773.
Pełny tekst źródłaMariani, Zen, Noah Stanton, James Whiteway, and Raisa Lehtinen. "Toronto Water Vapor Lidar Inter-Comparison Campaign." Remote Sensing 12, no. 19 (2020): 3165. http://dx.doi.org/10.3390/rs12193165.
Pełny tekst źródłaWang, Yusheng, Yidong Lou, Yi Zhang, Weiwei Song, Fei Huang, and Zhiyong Tu. "A Robust Framework for Simultaneous Localization and Mapping with Multiple Non-Repetitive Scanning Lidars." Remote Sensing 13, no. 10 (2021): 2015. http://dx.doi.org/10.3390/rs13102015.
Pełny tekst źródłaLiu, Zhengliang, Janet F. Barlow, Pak-Wai Chan, et al. "A Review of Progress and Applications of Pulsed Doppler Wind LiDARs." Remote Sensing 11, no. 21 (2019): 2522. http://dx.doi.org/10.3390/rs11212522.
Pełny tekst źródłaVasileiadis, George, Patrick Brun, Justine Devin, Omar Gabella, and Stephane Rivoire. "Design and development of a Raman Lidar for the CTAO-South site." Journal of Physics: Conference Series 2985, no. 1 (2025): 012007. https://doi.org/10.1088/1742-6596/2985/1/012007.
Pełny tekst źródłaWing, Robin, Wolfgang Steinbrecht, Sophie Godin-Beekmann, et al. "Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE)." Atmospheric Measurement Techniques 13, no. 10 (2020): 5621–42. http://dx.doi.org/10.5194/amt-13-5621-2020.
Pełny tekst źródłaSox, Leda, Vincent B. Wickwar, Tao Yuan, and Neal R. Criddle. "Comparison of rayleigh-scatter and sodium resonance lidar temperatures." EPJ Web of Conferences 176 (2018): 03005. http://dx.doi.org/10.1051/epjconf/201817603005.
Pełny tekst źródłaNevzorov, Alexey A., Alexey V. Nevzorov, Olga Kharchenko, and Yaroslav O. Romanovskii. "Lidar Complex for Control of the Ozonosphere over Tomsk, Russia." Atmosphere 15, no. 6 (2024): 622. http://dx.doi.org/10.3390/atmos15060622.
Pełny tekst źródłaFu, Wei, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann. "Dependence of turbulence estimations on nacelle lidar scanning strategies." Wind Energy Science 8, no. 5 (2023): 677–90. http://dx.doi.org/10.5194/wes-8-677-2023.
Pełny tekst źródłaFu, Wei, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann. "Dependence of turbulence estimations on nacelle lidar scanning strategies." Wind Energy Science 8, no. 5 (2023): 677–90. https://doi.org/10.5194/wes-8-677-2023.
Pełny tekst źródłaGong, Shunjie, Chenghao Shi, Hui Zhang, Huimin Lu, Zhiwen Zeng, and Xieyuanli Chen. "RSS-LIWOM: Rotating Solid-State LiDAR for Robust LiDAR-Inertial-Wheel Odometry and Mapping." Remote Sensing 15, no. 16 (2023): 4040. http://dx.doi.org/10.3390/rs15164040.
Pełny tekst źródłaCholleton, Danaël, Patrick Rairoux, and Alain Miffre. "Laboratory Evaluation of the (355, 532) nm Particle Depolarization Ratio of Pure Pollen at 180.0° Lidar Backscattering Angle." Remote Sensing 14, no. 15 (2022): 3767. http://dx.doi.org/10.3390/rs14153767.
Pełny tekst źródłaHildebrand, J., G. Baumgarten, J. Fiedler, et al. "Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere." Atmospheric Measurement Techniques 5, no. 10 (2012): 2433–45. http://dx.doi.org/10.5194/amt-5-2433-2012.
Pełny tekst źródłaStawiarski, Christina, Katja Träumner, Christoph Knigge, and Ronald Calhoun. "Scopes and Challenges of Dual-Doppler Lidar Wind Measurements—An Error Analysis." Journal of Atmospheric and Oceanic Technology 30, no. 9 (2013): 2044–62. http://dx.doi.org/10.1175/jtech-d-12-00244.1.
Pełny tekst źródłaNewman, Jennifer F., Petra M. Klein, Sonia Wharton, et al. "Evaluation of three lidar scanning strategies for turbulence measurements." Atmospheric Measurement Techniques 9, no. 5 (2016): 1993–2013. http://dx.doi.org/10.5194/amt-9-1993-2016.
Pełny tekst źródłaNewman, J. F., P. M. Klein, S. Wharton, et al. "Evaluation of three lidar scanning strategies for turbulence measurements." Atmospheric Measurement Techniques Discussions 8, no. 11 (2015): 12329–81. http://dx.doi.org/10.5194/amtd-8-12329-2015.
Pełny tekst źródłaAlexeev, Valeriy, Dmitry Goryachkin, Nikolay Gryaznov, Viktor Kuprenyuk, and Evgeniy Sosnov. "Prospects for using gated lidars in autonomous mobile robots." Robotics and Technical Cybernetics 9, no. 2 (2021): 133–41. http://dx.doi.org/10.31776/rtcj.9208.
Pełny tekst źródłaDuong, Huu Toan, and Young Soo Suh. "A Human Gait Tracking System Using Dual Foot-Mounted IMU and Multiple 2D LiDARs." Sensors 22, no. 17 (2022): 6368. http://dx.doi.org/10.3390/s22176368.
Pełny tekst źródłaWing, Robin, Alain Hauchecorne, Philippe Keckhut, et al. "Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars." Atmospheric Measurement Techniques 11, no. 10 (2018): 5531–47. http://dx.doi.org/10.5194/amt-11-5531-2018.
Pełny tekst źródłaAlsadik, Bashar. "Ideal Angular Orientation of Selected 64-Channel Multi Beam Lidars for Mobile Mapping Systems." Remote Sensing 12, no. 3 (2020): 510. http://dx.doi.org/10.3390/rs12030510.
Pełny tekst źródłaPolenin, V. "Application of lidars in the monitoring system of hydrophysical disturbances from moving objects." Transactions of the Krylov State Research Centre 3, no. 397 (2021): 127–32. http://dx.doi.org/10.24937/2542-2324-2021-3-397-127-132.
Pełny tekst źródłaFu, Wei, Feng Guo, David Schlipf, and Alfredo Peña. "Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar." Wind Energy Science 8, no. 12 (2023): 1893–907. http://dx.doi.org/10.5194/wes-8-1893-2023.
Pełny tekst źródłaOkamoto, Hajime, Kaori Sato, Masahiro Fujikawa, et al. "Development of Synergetic-Active Sensor-System for Evaluation of Observations by Earthcare." EPJ Web of Conferences 237 (2020): 07011. http://dx.doi.org/10.1051/epjconf/202023707011.
Pełny tekst źródła