Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Lithium quantification.

Artykuły w czasopismach na temat „Lithium quantification”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lithium quantification”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Paul, Partha P., Vivek Thampy, Chuntian Cao, et al. "Correction: Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries." Energy & Environmental Science 14, no. 9 (2021): 5097. http://dx.doi.org/10.1039/d1ee90049h.

Pełny tekst źródła
Streszczenie:
Correction for ‘Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries’ by Partha P. Paul et al., Energy Environ. Sci., 2021, DOI: 10.1039/d1ee01216a.
Style APA, Harvard, Vancouver, ISO itp.
2

Vikrant, K. S. N., Eric McShane, Andrew M. Colclasure, Bryan D. McCloskey, and Srikanth Allu. "Quantification of Dead Lithium on Graphite Anode under Fast Charging Conditions." Journal of The Electrochemical Society 169, no. 4 (2022): 040520. http://dx.doi.org/10.1149/1945-7111/ac61d3.

Pełny tekst źródła
Streszczenie:
A series of computational and experimental studies were conducted to understand the onset of lithium plating and subsequent quantification of dead lithium on graphite electrodes in the design of fast charging batteries. The experiments include titration and relaxation studies for detecting initiation of lithium metal plating for various SOC and C-rates, which are compared against the thermodynamically consistent phase field computational results. The collaborative study on “model graphite electrode” with 2.18 mAh cm−2 nominal capacity at 25 °C demonstrates: (1) the macroscopic voltage response
Style APA, Harvard, Vancouver, ISO itp.
3

Kraft, Vadim, Waldemar Weber, Benjamin Streipert, et al. "Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method." RSC Advances 6, no. 1 (2016): 8–17. http://dx.doi.org/10.1039/c5ra23624j.

Pełny tekst źródła
Streszczenie:
The work focused on the development of a new liquid chromatography-tandem quadrupole mass spectrometry method for the identification and quantification of organophosphates in lithium hexafluorophosphate-based lithium ion battery electrolytes.
Style APA, Harvard, Vancouver, ISO itp.
4

Dagger, Tim, Jonas Henschel, Babak Rad, et al. "Investigating the lithium ion battery electrolyte additive tris (2,2,2-trifluoroethyl) phosphite by gas chromatography with a flame ionization detector (GC-FID)." RSC Advances 7, no. 84 (2017): 53048–55. http://dx.doi.org/10.1039/c7ra09476k.

Pełny tekst źródła
Streszczenie:
The quantification of lithium ion battery electrolyte additives like flame retardants is both important and challenging. Here, different analytical methods were applied to investigate detection phenomena when applying GC-FID for the quantification.
Style APA, Harvard, Vancouver, ISO itp.
5

Zhou, Hanwei, Conner Fear, Tapesh Joshi, Judith Jeevarajan, and Partha P. Mukherjee. "Interplay of Lithium Plating Quantification on Thermal Safety Characteristics of Lithium-Ion Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 349. http://dx.doi.org/10.1149/ma2022-023349mtgabs.

Pełny tekst źródła
Streszczenie:
Adverse lithium plating is a significant side reaction during the fast charging of lithium-ion (Li-ion) batteries when the Li-ion flux exceeds the intercalation or diffusion limits of graphite electrodes. Accurate quantification of lithium plating has always been a tough challenge given the severe defects of online detection methods such as coulombic efficiency and voltage relaxation plateau, making the mathematical correlation between cell-level thermal safety hazards and quantitative lithium plating events still a bottleneck problem. In this study, we apply a three-electrode (3E) Li-ion cell
Style APA, Harvard, Vancouver, ISO itp.
6

Fan, Austin, Zhuo Li, and Kelsey Hatzell. "Operando Quantification of Dynamic Lithium Active Area Growth in Zero-Excess-Lithium Solid-State Batteries." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 418. https://doi.org/10.1149/ma2024-024418mtgabs.

Pełny tekst źródła
Streszczenie:
Growing demands for electric vehicles motivate the need for energy-dense battery technologies that can enable enhanced driving ranges on a single charge [1]. Zero-excess-lithium solid-state batteries operate with no excess lithium at the anode, instead fully cycling all the lithium within the cell during each cycle. Removing excess lithium significantly increases the specific and volumetric energy density, improves battery safety, and reduces manufacturing costs [2]. However, zero-excess-lithium solid-state batteries suffer from poor coulombic efficiency and lithium dendrite formation [3] resu
Style APA, Harvard, Vancouver, ISO itp.
7

Rangarajan, Sobana P., Yevgen Barsukov, and Partha P. Mukherjee. "In operando signature and quantification of lithium plating." Journal of Materials Chemistry A 7, no. 36 (2019): 20683–95. http://dx.doi.org/10.1039/c9ta07314k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Portillo, F. E., J. A. Liendo, A. C. González, et al. "Light element quantification by lithium elastic scattering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 305 (June 2013): 16–21. http://dx.doi.org/10.1016/j.nimb.2013.04.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bao, Wurigumula, and Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.

Pełny tekst źródła
Streszczenie:
The accelerated transition to renewable energy systems worldwide has triggered increasing interest in energy storage technologies, especially in lithium batteries. Accurate diagnosis and understanding of the batteries degradation mechanism are essential. Titration Gas Chromatography (TGC) has been developed to quantitively understand the anode. The inactive Li in the cycled anode can be categorized into two kinds: 1) trapped Li0 (such as trapped lithiated graphite (LixC6), Li0, and lithium silicon alloy (LixSi)) and 2) solid electrolyte interphase (SEI) Li+. Noted that only trapped Li0 can rea
Style APA, Harvard, Vancouver, ISO itp.
10

Kpetemey, Amen, Sanonka Tchegueni, Magnoudéwa Bassaï Bodjona, et al. "Quantification of Recoverable Components of Spent Lithium-Ion Batteries." Oriental Journal Of Chemistry 39, no. 4 (2023): 925–32. http://dx.doi.org/10.13005/ojc/390414.

Pełny tekst źródła
Streszczenie:
Recovering spent lithium-ion batteries can help protect the environment and generate added value. The aim of this work is to characterize the various parts of these spent lithium-ion batteries for subsequent recovery of the precious metal elements. The batteries were collected, electrically discharged and dismantled, and the various components quantified. The cathode powder obtained after basic leaching was characterized by ICP and XRD. The batteries consist of steel (21.10%) and plastic shells, the anode (24.40%), the electrolyte-soaked separator and the cathode (35.86%). The anode consists o
Style APA, Harvard, Vancouver, ISO itp.
11

Konz, Zachary M., Brendan M. Wirtz, Andrew M. Colclasure, et al. "High-Throughput Lithium Plating Quantification for Fast Charging Battery Design." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 503. http://dx.doi.org/10.1149/ma2023-012503mtgabs.

Pełny tekst źródła
Streszczenie:
Fast charging of most commercial lithium-ion batteries is limited due to fear of lithium plating on the graphite anode, which is difficult to detect and poses significant safety risk. Here we demonstrate the power of simple, accessible, and high-throughput cycling techniques to quantify irreversible Li plating spanning data from over 100 cells. We first demonstrate a protocol for Li|Graphite half-cells to observe the effects of energy density, charge rate, temperature, and State-of-Charge (SOC) on lithium plating and provide an interpretable empirical equation for predicting the plating onset
Style APA, Harvard, Vancouver, ISO itp.
12

Suryanarayanan, R. "Quantification of Carbamazepine in Tablets by Powder X-ray Diffractometry." Advances in X-ray Analysis 34 (1990): 417–27. http://dx.doi.org/10.1154/s0376030800014737.

Pełny tekst źródła
Streszczenie:
AbstractA powder x-ray diffraction technique has been developed for the quantification of carbamazepine in tablets. The other tablet ingredients were microcrystalline cellulose, starch, stearic acid and silicon dioxide. The tablets were ground in a ball mill and the powder mixed with lithium fluoride (20% w/w) which was the internal standard. Five lines of carbamazepine with d-spacings of 3.38, 3.34, 3.28, 3.26 and 3.23 Å and the 2.01 Å line of lithium fluoride were used for the quantitative analysis. A plot of the intensity ratio (sum of the intensities of the lines of carbamazepine/intensity
Style APA, Harvard, Vancouver, ISO itp.
13

Tanim, Tanvir R., Eric J. Dufek, Charles C. Dickerson, and Sean M. Wood. "Electrochemical Quantification of Lithium Plating: Challenges and Considerations." Journal of The Electrochemical Society 166, no. 12 (2019): A2689—A2696. http://dx.doi.org/10.1149/2.1581912jes.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Zhou, Hongyao, Haodong Liu, Xing Xing, et al. "Quantification of the ion transport mechanism in protective polymer coatings on lithium metal anodes." Chemical Science 12, no. 20 (2021): 7023–32. http://dx.doi.org/10.1039/d0sc06651f.

Pełny tekst źródła
Streszczenie:
Protective Polymer Coatings (PPCs) protect lithium metal anodes in rechargeable batteries to stabilize the Li/electrolyte interface and to extend the cycle life by reducing parasitic reactions and improving the lithium deposition morphology.
Style APA, Harvard, Vancouver, ISO itp.
15

Rifai, Kheireddine, Marc Constantin, Adnan Yilmaz, Lütfü Ç. Özcan, François R. Doucet, and Nawfel Azami. "Quantification of Lithium and Mineralogical Mapping in Crushed Ore Samples Using Laser Induced Breakdown Spectroscopy." Minerals 12, no. 2 (2022): 253. http://dx.doi.org/10.3390/min12020253.

Pełny tekst źródła
Streszczenie:
This article reports on the quantification of lithium and mineralogical mapping in crushed lithium ore by laser-induced breakdown spectroscopy (LIBS) using two different calibration methods. Thirty crushed ore samples from a pegmatite lithium deposit were used in this study. Representative samples containing the abundant minerals were taken from these crushed ores and mixed with resin to make polished disks. These disks were first analyzed by TIMA (TESCAN Integrated Mineral Analyzer) and then by a LIBS ECORE analyzer to determine the minerals. Afterwards, each of the thirty crushed ore samples
Style APA, Harvard, Vancouver, ISO itp.
16

Bai, Miao, Chao Lyu, Dazhi Yang, and Gareth Hinds. "Quantification of Lithium Plating in Lithium-Ion Batteries Based on Impedance Spectrum and Artificial Neural Network." Batteries 9, no. 7 (2023): 350. http://dx.doi.org/10.3390/batteries9070350.

Pełny tekst źródła
Streszczenie:
Accurate evaluation of the health status of lithium-ion batteries must be deemed as of great significance, insofar as the utility and safety of batteries are of concern. Lithium plating, in particular, is notoriously known to be a chemical reaction that can cause deterioration in, or even fatal hazards to, the health of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS), which has distinct advantages such as being fast and non-destructive over its competitors, suffices in detecting lithium plating and thus has been attracting increasing attention in the field of battery manage
Style APA, Harvard, Vancouver, ISO itp.
17

Xu, Hanying, Ce Han, Wenting Li, Huiyu Li, and Xinping Qiu. "Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries." Journal of Power Sources 529 (May 2022): 231219. http://dx.doi.org/10.1016/j.jpowsour.2022.231219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Petzl, Mathias, and Michael A. Danzer. "Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries." Journal of Power Sources 254 (May 2014): 80–87. http://dx.doi.org/10.1016/j.jpowsour.2013.12.060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Md Said and Mohd Tohir. "Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification." Processes 7, no. 10 (2019): 703. http://dx.doi.org/10.3390/pr7100703.

Pełny tekst źródła
Streszczenie:
The high capacity and voltage properties demonstrated by lithium-ion batteries render them as the preferred energy carrier in portable electronic devices. The application of the lithium-ion batteries which previously circulating and contained around small-scale electronics is now expanding into large scale emerging markets such as electromobility and stationary energy storage. Therefore, the understanding of the risk involved is imperative. Thermal runaway is the most common failure mode of lithium-ion battery which may lead to safety incidents. Transport process of immense amounts of heat rel
Style APA, Harvard, Vancouver, ISO itp.
20

Wilken, A., V. Kraft, S. Girod, M. Winter, and S. Nowak. "A fluoride-selective electrode (Fse) for the quantification of fluoride in lithium-ion battery (Lib) electrolytes." Analytical Methods 8, no. 38 (2016): 6932–40. http://dx.doi.org/10.1039/c6ay02264b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Huang, Ming, and Bo Lan. "Quantifying Tortuosity in Porous Lithium-Ion Battery Materials Using Ultrasound." ECS Meeting Abstracts MA2022-02, no. 6 (2022): 591. http://dx.doi.org/10.1149/ma2022-026591mtgabs.

Pełny tekst źródła
Streszczenie:
Active electrode materials in lithium-ion batteries are porous. These materials are composed of a solid frame containing interconnected pores/channels, in which mass transport follows a tortuous pathway. Tortuosity is defined as the ratio of the average tortuous pathway to the projected straight path, and is a particularly important parameter indicating the diffusivity and conductivity properties of porous battery materials; so quantifying tortuosity is highly desirable to safeguard battery performance. Existing quantification methods are mostly based on impedance and polarisation measurements
Style APA, Harvard, Vancouver, ISO itp.
22

Paul, Partha P., Vivek Thampy, Chuntian Cao, et al. "Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries." Energy & Environmental Science 14, no. 9 (2021): 4979–88. http://dx.doi.org/10.1039/d1ee01216a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Schultz, Carola, Sven Vedder, Benjamin Streipert, Martin Winter, and Sascha Nowak. "Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS." RSC Advances 7, no. 45 (2017): 27853–62. http://dx.doi.org/10.1039/c7ra03839a.

Pełny tekst źródła
Streszczenie:
A novel high performance liquid chromatography hyphenated to tandem mass spectrometry method for the separation and quantification of components from common organic carbonate-based electrolyte systems in lithium ion batteries was developed.
Style APA, Harvard, Vancouver, ISO itp.
24

Sheikh, Mahsa, Meha Qassem, Iasonas F. Triantis, and Panicos A. Kyriacou. "Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder." Sensors 22, no. 3 (2022): 736. http://dx.doi.org/10.3390/s22030736.

Pełny tekst źródła
Streszczenie:
Since the mid-20th century, lithium continues to be prescribed as a first-line mood stabilizer for the management of bipolar disorder (BD). However, lithium has a very narrow therapeutic index, and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The quantification of lithium in clinical laboratories is performed by atomic absorption spectrometry, flame emission photometry, or conventional ion-selective electrodes. All these techniques are cumbersome and require frequent blood tests with consequent discom
Style APA, Harvard, Vancouver, ISO itp.
25

Kanabar, Naisargi, Seiichiro Higashiya, Devendra Sadana, Steve Bedell, and Haralabos Efstathiadis. "Lithium Quantification in Pristine and Degraded Lithium-Ion Battery Electrodes Using Nuclear Reaction Analysis (NRA) after High C-Rate Cycling." ECS Meeting Abstracts MA2025-01, no. 9 (2025): 3175. https://doi.org/10.1149/ma2025-0193175mtgabs.

Pełny tekst źródła
Streszczenie:
This study investigates lithium content variation in both anode and cathode materials before and after extensive cycling, providing insights into lithium consumption, trapping, and possible deposition mechanisms. Fast charging of lithium-ion batteries (LIBs) within five minutes - like refueling a car is a key goal in advancing battery technology. However, high C-rate cycling significantly accelerates the degradation of both anode and cathode materials, leading to lithium inventory loss and performance decay. To quantify lithium retention and depletion in pristine and degraded samples, we condu
Style APA, Harvard, Vancouver, ISO itp.
26

Danani, Chandan, H. L. Swami, Paritosh Chaudhuri, A. Mutzke, R. Schneider, and Manoj Warrier. "Multi-model quantification of defects in irradiated lithium titanate." Fusion Engineering and Design 140 (March 2019): 92–96. http://dx.doi.org/10.1016/j.fusengdes.2019.02.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Li, Na, Zhichao Chu, Chenchen Liu, et al. "Quantification of lithium deposition under mechano-electrochemical coupling effect." Journal of Power Sources 594 (February 2024): 233979. http://dx.doi.org/10.1016/j.jpowsour.2023.233979.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Menzel, Jennifer, Hannah Schultz, Vadim Kraft, Juan Pablo Badillo, Martin Winter, and Sascha Nowak. "Quantification of ionic organo(fluoro)phosphates in decomposed lithium battery electrolytes." RSC Advances 7, no. 62 (2017): 39314–24. http://dx.doi.org/10.1039/c7ra07486g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Oberti, Roberta, Fernando Cá mara, Luisa Ottolini, and José Maria Caballero. "Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles." European Journal of Mineralogy 15, no. 2 (2003): 309–19. http://dx.doi.org/10.1127/0935-1221/2003/0015-0309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kim, Sangwook, Zonggen Yi, Tanvir R. Tanim, et al. "Physics-Based Methods and Tools for Rapid Classification, Quantification, and Forecasting of Lithium-Ion Battery Aging Modes and Life." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 351. http://dx.doi.org/10.1149/ma2022-023351mtgabs.

Pełny tekst źródła
Streszczenie:
Physics-based methods and tools for rapid classification, quantification, and forecasting of lithium-ion battery aging modes and life Sangwook Kim,1 Zonggen Yi,1 Ross R. Kunz,1 Eric J. Dufek,1 Tanvir Tanim,1 Kevin L. Gering1, Bor-Rong Chen,1 Peter Weddle, 2 Kandler Smith, 2 1 Energy and Environmental Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83415 USA 2 Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, CO 80401, USA 242nd ECS Meeting, Atlanta, GA, Oct. 9 - 13, 2022 Symposium: A03 – Lithium Ion Batteries Lithium-ion bat
Style APA, Harvard, Vancouver, ISO itp.
31

Weitzel, Karl-Michael, Johanna Schepp, Jona Schuch, Jan Philipp Hofmann, and Stefan Adams. "On the Description of Electrode Materials Based on the Quantification of Ionic and Electronic Work Functions." ECS Meeting Abstracts MA2023-02, no. 2 (2023): 187. http://dx.doi.org/10.1149/ma2023-022187mtgabs.

Pełny tekst źródła
Streszczenie:
During decharging of a lithium ion battery (LIB) electrons are transferred from the cathode material to the outer circuit and lithium ions are transferred into the electrolyte. Here, the energy required to take electrons and lithium ions out of two prototypical cathode materials, LixFePO4 and LixMn2O4 is investigated as a function of the state of lithiation, x [1]. Ionic work functions are measured by thermionic emission, electronic work functions are measured either by thermionic emission or by photoelectron spectroscopy. The work functions measured vary significantly with x for LixFePO4 with
Style APA, Harvard, Vancouver, ISO itp.
32

Ciampolillo, Maria Vittoria, Annamaria Zaltron, Marco Bazzan, Nicola Argiolas, and Cinzia Sada. "Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption." Applied Spectroscopy 65, no. 2 (2011): 216–20. http://dx.doi.org/10.1366/10-06015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Liu, Danny X., Jinghui Wang, Ke Pan, et al. "In Situ Quantification and Visualization of Lithium Transport with Neutrons." Angewandte Chemie International Edition 53, no. 36 (2014): 9498–502. http://dx.doi.org/10.1002/anie.201404197.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Liu, Danny X., Jinghui Wang, Ke Pan, et al. "In Situ Quantification and Visualization of Lithium Transport with Neutrons." Angewandte Chemie 126, no. 36 (2014): 9652–56. http://dx.doi.org/10.1002/ange.201404197.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Folkson, Catherine Alexis, Thomas J. Holland, Carlos E. Garcia, Sabine Paarmann, Gregory James Offer, and Monica Marinescu. "Impact of Individual Versus Successive Pulse Charging on Lithium Plating Reversibility in Subzero Temperatures." ECS Meeting Abstracts MA2025-01, no. 8 (2025): 830. https://doi.org/10.1149/ma2025-018830mtgabs.

Pełny tekst źródła
Streszczenie:
Lithium plating is a key degradation mechanism which results from operating in cold temperatures (or high C-rates) and can ultimately contribute to catastrophic failure of lithium-ion batteries via short circuit. Predicting the onset of lithium plating via non-invasive methods could allow for Battery Management Systems to modify cell operating conditions to minimise cell degradation and extend cell lifetime. In order to detect lithium plating reliably, the dependence between reversible and irreversible lithium plating must be understood better. This work aims to address this gap by analysing t
Style APA, Harvard, Vancouver, ISO itp.
36

Möller, Sören, Takahiro Satoh, Yasuyuki Ishii, et al. "Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis." Batteries 7, no. 2 (2021): 41. http://dx.doi.org/10.3390/batteries7020041.

Pełny tekst źródła
Streszczenie:
Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium batteries via 3 MeV proton-based characteristic x-ray and gamma-ray emission analysis. The analysis is demonstrated on cross-sections of ceramic and polymer all-solid-state cells with LLZO and MEEP/LIBOB solid electrolytes. Different SoC are measured ex-situ an
Style APA, Harvard, Vancouver, ISO itp.
37

McShane, Eric J., Andrew M. Colclasure, David Emory Brown, Zachary M. Konz, Kandler Smith, and Bryan D. McCloskey. "Quantification of Inactive Lithium, Solid Carbonate Species, and Lithium Acetylide on Graphite Electrodes after Fast Charging." ECS Meeting Abstracts MA2020-02, no. 3 (2020): 542. http://dx.doi.org/10.1149/ma2020-023542mtgabs.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Xia, C., C. Y. Kwok, and L. F. Nazar. "A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide." Science 361, no. 6404 (2018): 777–81. http://dx.doi.org/10.1126/science.aas9343.

Pełny tekst źródła
Streszczenie:
Lithium-oxygen (Li-O2) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O2 to lithium peroxide (Li2O2). We report an inorganic-electrolyte Li-O2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li2O). It relies on a bifunctional metal oxide host that catalyzes O–O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O2 evolution on charge with very low overpotential. Online mass spectrometry and
Style APA, Harvard, Vancouver, ISO itp.
39

Zanini, Leonardo, Annamaria Zaltron, Enrico Turato, Riccardo Zamboni, and Cinzia Sada. "Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip." Sensors 22, no. 3 (2022): 1144. http://dx.doi.org/10.3390/s22031144.

Pełny tekst źródła
Streszczenie:
This paper deals with the quantification of proteins by implementing the Bradford protein assay method in a portable opto-microfluidic platform for protein concentrations lower than 1.4 mg/mL. Absorbance is measured by way of optical waveguides integrated to a cross-junction microfluidic circuit on a single lithium niobate substrate. A new protocol is proposed to perform the protein quantification based on the high correlation of the light absorbance at 595 nm, as commonly used in the Bradford method, with the one achieved at 633 nm with a cheap commercially available diode laser. This protoco
Style APA, Harvard, Vancouver, ISO itp.
40

Imaz, M. L., L. Garcia-Esteve, M. Torra, D. Soy, K. Langohr, and R. Martin-Santos. "Lithium placental passage at delivery: an observational study." European Psychiatry 65, S1 (2022): S401—S402. http://dx.doi.org/10.1192/j.eurpsy.2022.1017.

Pełny tekst źródła
Streszczenie:
Introduction Lithium is used as a first-line treatment for bipolar disorder during perinatal period. Dosing of lithium can be challenging as a result of pharmacokinetic changes in renal physiology. Frequent monitoring of lithium blood levels during pregnancy is recommended in order remain within the therapeutic window (0.5 to 1.2 mEq/L). Lower neonatal lithium blood level (<0.64 mEq/L) at time of delivery reduces the risk of lithium side effects in the neonate. Objectives The aim of the present study was to quantify the rate of lithium placental passage in real word. Methods We included a t
Style APA, Harvard, Vancouver, ISO itp.
41

Meng, Shirley. "Si Anode for All Solid State Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 249. http://dx.doi.org/10.1149/ma2022-023249mtgabs.

Pełny tekst źródła
Streszczenie:
The development of silicon anodes for lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. I will show how to enable the operation of a 99.9 weight % microsilicon anode by using the interface passivating properties of sulfide solid electrolytes. Advanced interface and bulk characterization, and quantification of interfacial components, showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. Microsilicon full cells were assembled and found to achieve high areal current density, wide operating tem
Style APA, Harvard, Vancouver, ISO itp.
42

Bao, Wurigumula, and Ying Shirley Meng. "Insights into Lithium Inventory Quantification of LiNi0.5Mn1.5O4-Graphite Full Cells." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 507. https://doi.org/10.1149/ma2024-024507mtgabs.

Pełny tekst źródła
Streszczenie:
High voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in the full cell hindered further commercialization. Therefore, it is crucial to evaluate lithium inventory across the entire battery system. The Li inventory evolution upon cycling in the LNMO-Graphite pouch cell is systematically studied by developing Lithium quantification methods on cathode, anode, and electrolyte. All the active
Style APA, Harvard, Vancouver, ISO itp.
43

Otten, Abigail, Kelly Nieto, and Amy L. Prieto. "Coupling Quantification of Pulverization with Galvanostatic Cycling of Bulk Film Alloy-Type Anodes." ECS Meeting Abstracts MA2022-02, no. 29 (2022): 2587. http://dx.doi.org/10.1149/ma2022-02292587mtgabs.

Pełny tekst źródła
Streszczenie:
Alloy-type anodes, such as metallic antimony, demonstrate promise as alternative electrode materials for lithium-ion battery systems due to their high theoretical capacity of 660 mAh/g. However, antimony undergoes anisotropic volume expansion and multiple crystallographic phase transformations upon lithiation and delithiation, which often leads to fracture. This fracture can result in loss of electrical contact and poor cycling stability. These pulverization phenomena are often observed, primarily during delithiation, but are not quantified in terms of physical bulk material lost. To quantify
Style APA, Harvard, Vancouver, ISO itp.
44

Scharpmann, Philippa, Robert Leonhardt, Tim Tichter, Anita Schmidt, and Jonas Krug von Nidda. "In-Situ Quantification of the Ageing Dynamics in Lithium-Ion Cells up to Failure-Near Conditions." ECS Meeting Abstracts MA2023-02, no. 3 (2023): 449. http://dx.doi.org/10.1149/ma2023-023449mtgabs.

Pełny tekst źródła
Streszczenie:
Implementing end-of-life (EOL) lithium-ion batteries from automotive applications in stationary energy storages is of utmost relevance for a sustainable handling of scarce resources. Beneficial from an economic and ecological perspective, such second-life applications urgently require a guarantee for safe operation. Unlike the state of health (SOH), defined by classical performance indicators such as capacity and voltage, the state of safety (SOS) of an aged battery cannot be assessed straightforward. Its determination requires a plethora of cells to be tested which is a particular challenge f
Style APA, Harvard, Vancouver, ISO itp.
45

Imaz, M. L., M. Torra, D. Soy, K. Langorh, L. Garcia-Esteve, and R. Martin-Santos. "Lithium placental passage at delivery and neonatal outcomes: A retrospective observational study." European Psychiatry 64, S1 (2021): S203. http://dx.doi.org/10.1192/j.eurpsy.2021.540.

Pełny tekst źródła
Streszczenie:
Introduction Lithium is an effective mood stabilizer and is widely used as a first-line treatment for bipolar disorder in the perinatal period. Several guidelines have provided clinical advice on dosing strategy (dose reduction versus stop lithium) in the peripartum period to minimize the risk of neonatal complications. An association has been observed between high neonatal lithium concentrations (> 0.64 mEq/L) and lower 1-min Apgar scores, longer hospital stays, and central nervous system and neuromuscular complications.ObjectivesTo quantify the rate of lithium placental passage at deliver
Style APA, Harvard, Vancouver, ISO itp.
46

Gauvin, Raynald, Nicolas Brodusch, and Stéphanie Bessette. "Quantification of Lithium in State-of-the-Art low Voltage STEM." BIO Web of Conferences 129 (2024): 25026. http://dx.doi.org/10.1051/bioconf/202412925026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Hsieh, Yi-Chen, Marco Leißing, Sascha Nowak, Bing-Joe Hwang, Martin Winter, and Gunther Brunklaus. "Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy." Cell Reports Physical Science 1, no. 8 (2020): 100139. http://dx.doi.org/10.1016/j.xcrp.2020.100139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Bianconi, M., N. Argiolas, M. Bazzan, et al. "Quantification of nuclear damage in high energy ion implanted lithium niobate." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 257, no. 1-2 (2007): 597–600. http://dx.doi.org/10.1016/j.nimb.2007.01.046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Dumaresq, Nicolas, Raynald Gauvin, and Karim Zaghib. "Low-Voltage STEM-Eels Quantification for Lithium Ion Battery Material Characterization." ECS Meeting Abstracts MA2020-01, no. 4 (2020): 525. http://dx.doi.org/10.1149/ma2020-014525mtgabs.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zhu, Changlian, Cuicui Xie, Kai Zhou, and Klas Blomgren. "Lithium treatment reduced microglia activation and inflammation after irradiation to the immature brain (P6256)." Journal of Immunology 190, no. 1_Supplement (2013): 115.24. http://dx.doi.org/10.4049/jimmunol.190.supp.115.24.

Pełny tekst źródła
Streszczenie:
Abstract To evaluate the effects of lithium on microglia activation and inflammation after irradiation to the immature brain, male rat pups were injected 2 mmol/kg lithium chloride i.p. on postnatal day 7 (P7), additional lithium injections, 1 mmol/kg, were administered at 24 h intervals. Pups were subjected to whole brain 6Gy irradiation on P11. The pups were sacrificed at 6h and 24h after IR. Microglia scattered in the brain can be detected by counting their numbers, their size, engulfment of cell debris or by the production of cytokines and chemokines. Microglia were stained using the marke
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!