Artykuły w czasopismach na temat „Lithium quantification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lithium quantification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Paul, Partha P., Vivek Thampy, Chuntian Cao, et al. "Correction: Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries." Energy & Environmental Science 14, no. 9 (2021): 5097. http://dx.doi.org/10.1039/d1ee90049h.
Pełny tekst źródłaVikrant, K. S. N., Eric McShane, Andrew M. Colclasure, Bryan D. McCloskey, and Srikanth Allu. "Quantification of Dead Lithium on Graphite Anode under Fast Charging Conditions." Journal of The Electrochemical Society 169, no. 4 (2022): 040520. http://dx.doi.org/10.1149/1945-7111/ac61d3.
Pełny tekst źródłaKraft, Vadim, Waldemar Weber, Benjamin Streipert, et al. "Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method." RSC Advances 6, no. 1 (2016): 8–17. http://dx.doi.org/10.1039/c5ra23624j.
Pełny tekst źródłaDagger, Tim, Jonas Henschel, Babak Rad, et al. "Investigating the lithium ion battery electrolyte additive tris (2,2,2-trifluoroethyl) phosphite by gas chromatography with a flame ionization detector (GC-FID)." RSC Advances 7, no. 84 (2017): 53048–55. http://dx.doi.org/10.1039/c7ra09476k.
Pełny tekst źródłaZhou, Hanwei, Conner Fear, Tapesh Joshi, Judith Jeevarajan, and Partha P. Mukherjee. "Interplay of Lithium Plating Quantification on Thermal Safety Characteristics of Lithium-Ion Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 349. http://dx.doi.org/10.1149/ma2022-023349mtgabs.
Pełny tekst źródłaFan, Austin, Zhuo Li, and Kelsey Hatzell. "Operando Quantification of Dynamic Lithium Active Area Growth in Zero-Excess-Lithium Solid-State Batteries." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 418. https://doi.org/10.1149/ma2024-024418mtgabs.
Pełny tekst źródłaRangarajan, Sobana P., Yevgen Barsukov, and Partha P. Mukherjee. "In operando signature and quantification of lithium plating." Journal of Materials Chemistry A 7, no. 36 (2019): 20683–95. http://dx.doi.org/10.1039/c9ta07314k.
Pełny tekst źródłaPortillo, F. E., J. A. Liendo, A. C. González, et al. "Light element quantification by lithium elastic scattering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 305 (June 2013): 16–21. http://dx.doi.org/10.1016/j.nimb.2013.04.049.
Pełny tekst źródłaBao, Wurigumula, and Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.
Pełny tekst źródłaKpetemey, Amen, Sanonka Tchegueni, Magnoudéwa Bassaï Bodjona, et al. "Quantification of Recoverable Components of Spent Lithium-Ion Batteries." Oriental Journal Of Chemistry 39, no. 4 (2023): 925–32. http://dx.doi.org/10.13005/ojc/390414.
Pełny tekst źródłaKonz, Zachary M., Brendan M. Wirtz, Andrew M. Colclasure, et al. "High-Throughput Lithium Plating Quantification for Fast Charging Battery Design." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 503. http://dx.doi.org/10.1149/ma2023-012503mtgabs.
Pełny tekst źródłaSuryanarayanan, R. "Quantification of Carbamazepine in Tablets by Powder X-ray Diffractometry." Advances in X-ray Analysis 34 (1990): 417–27. http://dx.doi.org/10.1154/s0376030800014737.
Pełny tekst źródłaTanim, Tanvir R., Eric J. Dufek, Charles C. Dickerson, and Sean M. Wood. "Electrochemical Quantification of Lithium Plating: Challenges and Considerations." Journal of The Electrochemical Society 166, no. 12 (2019): A2689—A2696. http://dx.doi.org/10.1149/2.1581912jes.
Pełny tekst źródłaZhou, Hongyao, Haodong Liu, Xing Xing, et al. "Quantification of the ion transport mechanism in protective polymer coatings on lithium metal anodes." Chemical Science 12, no. 20 (2021): 7023–32. http://dx.doi.org/10.1039/d0sc06651f.
Pełny tekst źródłaRifai, Kheireddine, Marc Constantin, Adnan Yilmaz, Lütfü Ç. Özcan, François R. Doucet, and Nawfel Azami. "Quantification of Lithium and Mineralogical Mapping in Crushed Ore Samples Using Laser Induced Breakdown Spectroscopy." Minerals 12, no. 2 (2022): 253. http://dx.doi.org/10.3390/min12020253.
Pełny tekst źródłaBai, Miao, Chao Lyu, Dazhi Yang, and Gareth Hinds. "Quantification of Lithium Plating in Lithium-Ion Batteries Based on Impedance Spectrum and Artificial Neural Network." Batteries 9, no. 7 (2023): 350. http://dx.doi.org/10.3390/batteries9070350.
Pełny tekst źródłaXu, Hanying, Ce Han, Wenting Li, Huiyu Li, and Xinping Qiu. "Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries." Journal of Power Sources 529 (May 2022): 231219. http://dx.doi.org/10.1016/j.jpowsour.2022.231219.
Pełny tekst źródłaPetzl, Mathias, and Michael A. Danzer. "Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries." Journal of Power Sources 254 (May 2014): 80–87. http://dx.doi.org/10.1016/j.jpowsour.2013.12.060.
Pełny tekst źródłaMd Said and Mohd Tohir. "Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification." Processes 7, no. 10 (2019): 703. http://dx.doi.org/10.3390/pr7100703.
Pełny tekst źródłaWilken, A., V. Kraft, S. Girod, M. Winter, and S. Nowak. "A fluoride-selective electrode (Fse) for the quantification of fluoride in lithium-ion battery (Lib) electrolytes." Analytical Methods 8, no. 38 (2016): 6932–40. http://dx.doi.org/10.1039/c6ay02264b.
Pełny tekst źródłaHuang, Ming, and Bo Lan. "Quantifying Tortuosity in Porous Lithium-Ion Battery Materials Using Ultrasound." ECS Meeting Abstracts MA2022-02, no. 6 (2022): 591. http://dx.doi.org/10.1149/ma2022-026591mtgabs.
Pełny tekst źródłaPaul, Partha P., Vivek Thampy, Chuntian Cao, et al. "Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries." Energy & Environmental Science 14, no. 9 (2021): 4979–88. http://dx.doi.org/10.1039/d1ee01216a.
Pełny tekst źródłaSchultz, Carola, Sven Vedder, Benjamin Streipert, Martin Winter, and Sascha Nowak. "Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS." RSC Advances 7, no. 45 (2017): 27853–62. http://dx.doi.org/10.1039/c7ra03839a.
Pełny tekst źródłaSheikh, Mahsa, Meha Qassem, Iasonas F. Triantis, and Panicos A. Kyriacou. "Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder." Sensors 22, no. 3 (2022): 736. http://dx.doi.org/10.3390/s22030736.
Pełny tekst źródłaKanabar, Naisargi, Seiichiro Higashiya, Devendra Sadana, Steve Bedell, and Haralabos Efstathiadis. "Lithium Quantification in Pristine and Degraded Lithium-Ion Battery Electrodes Using Nuclear Reaction Analysis (NRA) after High C-Rate Cycling." ECS Meeting Abstracts MA2025-01, no. 9 (2025): 3175. https://doi.org/10.1149/ma2025-0193175mtgabs.
Pełny tekst źródłaDanani, Chandan, H. L. Swami, Paritosh Chaudhuri, A. Mutzke, R. Schneider, and Manoj Warrier. "Multi-model quantification of defects in irradiated lithium titanate." Fusion Engineering and Design 140 (March 2019): 92–96. http://dx.doi.org/10.1016/j.fusengdes.2019.02.006.
Pełny tekst źródłaLi, Na, Zhichao Chu, Chenchen Liu, et al. "Quantification of lithium deposition under mechano-electrochemical coupling effect." Journal of Power Sources 594 (February 2024): 233979. http://dx.doi.org/10.1016/j.jpowsour.2023.233979.
Pełny tekst źródłaMenzel, Jennifer, Hannah Schultz, Vadim Kraft, Juan Pablo Badillo, Martin Winter, and Sascha Nowak. "Quantification of ionic organo(fluoro)phosphates in decomposed lithium battery electrolytes." RSC Advances 7, no. 62 (2017): 39314–24. http://dx.doi.org/10.1039/c7ra07486g.
Pełny tekst źródłaOberti, Roberta, Fernando Cá mara, Luisa Ottolini, and José Maria Caballero. "Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles." European Journal of Mineralogy 15, no. 2 (2003): 309–19. http://dx.doi.org/10.1127/0935-1221/2003/0015-0309.
Pełny tekst źródłaKim, Sangwook, Zonggen Yi, Tanvir R. Tanim, et al. "Physics-Based Methods and Tools for Rapid Classification, Quantification, and Forecasting of Lithium-Ion Battery Aging Modes and Life." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 351. http://dx.doi.org/10.1149/ma2022-023351mtgabs.
Pełny tekst źródłaWeitzel, Karl-Michael, Johanna Schepp, Jona Schuch, Jan Philipp Hofmann, and Stefan Adams. "On the Description of Electrode Materials Based on the Quantification of Ionic and Electronic Work Functions." ECS Meeting Abstracts MA2023-02, no. 2 (2023): 187. http://dx.doi.org/10.1149/ma2023-022187mtgabs.
Pełny tekst źródłaCiampolillo, Maria Vittoria, Annamaria Zaltron, Marco Bazzan, Nicola Argiolas, and Cinzia Sada. "Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption." Applied Spectroscopy 65, no. 2 (2011): 216–20. http://dx.doi.org/10.1366/10-06015.
Pełny tekst źródłaLiu, Danny X., Jinghui Wang, Ke Pan, et al. "In Situ Quantification and Visualization of Lithium Transport with Neutrons." Angewandte Chemie International Edition 53, no. 36 (2014): 9498–502. http://dx.doi.org/10.1002/anie.201404197.
Pełny tekst źródłaLiu, Danny X., Jinghui Wang, Ke Pan, et al. "In Situ Quantification and Visualization of Lithium Transport with Neutrons." Angewandte Chemie 126, no. 36 (2014): 9652–56. http://dx.doi.org/10.1002/ange.201404197.
Pełny tekst źródłaFolkson, Catherine Alexis, Thomas J. Holland, Carlos E. Garcia, Sabine Paarmann, Gregory James Offer, and Monica Marinescu. "Impact of Individual Versus Successive Pulse Charging on Lithium Plating Reversibility in Subzero Temperatures." ECS Meeting Abstracts MA2025-01, no. 8 (2025): 830. https://doi.org/10.1149/ma2025-018830mtgabs.
Pełny tekst źródłaMöller, Sören, Takahiro Satoh, Yasuyuki Ishii, et al. "Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis." Batteries 7, no. 2 (2021): 41. http://dx.doi.org/10.3390/batteries7020041.
Pełny tekst źródłaMcShane, Eric J., Andrew M. Colclasure, David Emory Brown, Zachary M. Konz, Kandler Smith, and Bryan D. McCloskey. "Quantification of Inactive Lithium, Solid Carbonate Species, and Lithium Acetylide on Graphite Electrodes after Fast Charging." ECS Meeting Abstracts MA2020-02, no. 3 (2020): 542. http://dx.doi.org/10.1149/ma2020-023542mtgabs.
Pełny tekst źródłaXia, C., C. Y. Kwok, and L. F. Nazar. "A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide." Science 361, no. 6404 (2018): 777–81. http://dx.doi.org/10.1126/science.aas9343.
Pełny tekst źródłaZanini, Leonardo, Annamaria Zaltron, Enrico Turato, Riccardo Zamboni, and Cinzia Sada. "Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip." Sensors 22, no. 3 (2022): 1144. http://dx.doi.org/10.3390/s22031144.
Pełny tekst źródłaImaz, M. L., L. Garcia-Esteve, M. Torra, D. Soy, K. Langohr, and R. Martin-Santos. "Lithium placental passage at delivery: an observational study." European Psychiatry 65, S1 (2022): S401—S402. http://dx.doi.org/10.1192/j.eurpsy.2022.1017.
Pełny tekst źródłaMeng, Shirley. "Si Anode for All Solid State Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 249. http://dx.doi.org/10.1149/ma2022-023249mtgabs.
Pełny tekst źródłaBao, Wurigumula, and Ying Shirley Meng. "Insights into Lithium Inventory Quantification of LiNi0.5Mn1.5O4-Graphite Full Cells." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 507. https://doi.org/10.1149/ma2024-024507mtgabs.
Pełny tekst źródłaOtten, Abigail, Kelly Nieto, and Amy L. Prieto. "Coupling Quantification of Pulverization with Galvanostatic Cycling of Bulk Film Alloy-Type Anodes." ECS Meeting Abstracts MA2022-02, no. 29 (2022): 2587. http://dx.doi.org/10.1149/ma2022-02292587mtgabs.
Pełny tekst źródłaScharpmann, Philippa, Robert Leonhardt, Tim Tichter, Anita Schmidt, and Jonas Krug von Nidda. "In-Situ Quantification of the Ageing Dynamics in Lithium-Ion Cells up to Failure-Near Conditions." ECS Meeting Abstracts MA2023-02, no. 3 (2023): 449. http://dx.doi.org/10.1149/ma2023-023449mtgabs.
Pełny tekst źródłaImaz, M. L., M. Torra, D. Soy, K. Langorh, L. Garcia-Esteve, and R. Martin-Santos. "Lithium placental passage at delivery and neonatal outcomes: A retrospective observational study." European Psychiatry 64, S1 (2021): S203. http://dx.doi.org/10.1192/j.eurpsy.2021.540.
Pełny tekst źródłaGauvin, Raynald, Nicolas Brodusch, and Stéphanie Bessette. "Quantification of Lithium in State-of-the-Art low Voltage STEM." BIO Web of Conferences 129 (2024): 25026. http://dx.doi.org/10.1051/bioconf/202412925026.
Pełny tekst źródłaHsieh, Yi-Chen, Marco Leißing, Sascha Nowak, Bing-Joe Hwang, Martin Winter, and Gunther Brunklaus. "Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy." Cell Reports Physical Science 1, no. 8 (2020): 100139. http://dx.doi.org/10.1016/j.xcrp.2020.100139.
Pełny tekst źródłaBianconi, M., N. Argiolas, M. Bazzan, et al. "Quantification of nuclear damage in high energy ion implanted lithium niobate." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 257, no. 1-2 (2007): 597–600. http://dx.doi.org/10.1016/j.nimb.2007.01.046.
Pełny tekst źródłaDumaresq, Nicolas, Raynald Gauvin, and Karim Zaghib. "Low-Voltage STEM-Eels Quantification for Lithium Ion Battery Material Characterization." ECS Meeting Abstracts MA2020-01, no. 4 (2020): 525. http://dx.doi.org/10.1149/ma2020-014525mtgabs.
Pełny tekst źródłaZhu, Changlian, Cuicui Xie, Kai Zhou, and Klas Blomgren. "Lithium treatment reduced microglia activation and inflammation after irradiation to the immature brain (P6256)." Journal of Immunology 190, no. 1_Supplement (2013): 115.24. http://dx.doi.org/10.4049/jimmunol.190.supp.115.24.
Pełny tekst źródła