Gotowa bibliografia na temat „Log-concavité”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Log-concavité”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Log-concavité"

1

Habsieger, Laurent. "Inégalités entre fonctions symétriques élémentaires: applications à des problèmes de log-concavité." Discrete Mathematics 115, no. 1-3 (1993): 167–74. http://dx.doi.org/10.1016/0012-365x(93)90486-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

McNamara, Peter R. W., and Bruce E. Sagan. "Infinite log-concavity: developments and conjectures." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (2009). http://dx.doi.org/10.46298/dmtcs.2678.

Pełny tekst źródła
Streszczenie:
International audience Given a sequence $(a_k)=a_0,a_1,a_2,\ldots$ of real numbers, define a new sequence $\mathcal{L}(a_k)=(b_k)$ where $b_k=a_k^2-a_{k-1}a_{k+1}$. So $(a_k)$ is log-concave if and only if $(b_k)$ is a nonnegative sequence. Call $(a_k)$ $\textit{infinitely log-concave}$ if $\mathcal{L}^i(a_k)$ is nonnegative for all $i \geq 1$. Boros and Moll conjectured that the rows of Pascal's triangle are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for the $n$th row for all $n \leq 1450$. We can also use our methods to give a
Style APA, Harvard, Vancouver, ISO itp.
3

Narayanan, Hariharan. "Estimating deep Littlewood-Richardson Coefficients." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (2014). http://dx.doi.org/10.46298/dmtcs.2403.

Pełny tekst źródła
Streszczenie:
International audience Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $(GL_n)$. The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concavity of the above mentioned class of Littlewood-Richardson coefficients. Coefficients de Littlewood Richardson sont des constantes de structure apparaissant dans la théorie de la
Style APA, Harvard, Vancouver, ISO itp.
4

Gleitz, Anne-Sophie. "$\ell$-restricted $Q$-systems and quantum affine algebras." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (2014). http://dx.doi.org/10.46298/dmtcs.2375.

Pełny tekst źródła
Streszczenie:
International audience Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an $\ell$-restricted $Q$-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type $E_6$ following our preprint (2013). In types $E_7$ and $E_8$, we prove positivity for a subset of the nodes of the Dynkin diagram, and we reduce the positivity for the remaining nodes to the conjectural iterated log-concavity of certain explicit sequences of real algebraic numbers. Kuniba, Na
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Log-concavité"

1

Bizeul, Pierre. "Stochastic methods in convexity." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS731.

Pełny tekst źródła
Streszczenie:
Cette thèse s'inscrit dans le cadre des probabilités en grande dimension, en particulier sous hypothèse de convexité. Dans une première partie, on étudie le comportement des l'entropie et de l'information de Fisher vis à vis des convolutions de vecteurs log-concave. Ensuite, à l'aide de la localisation stochastique, une technique récente qui a notamment servi à la quasi résolution de la conjecture KLS, nous établissons des résultats nouveaux sur la fonction de concentration des mesures log-concave, et leur constante de log-sobolev. La dernière partie est consacrée à l'étude de grands systèmes
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!