Gotowa bibliografia na temat „Low-Latency applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low-Latency applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Low-Latency applications"
Gürel, O., i M. U. Çakır. "XMPP Based Applications under Low Bandwidth and High Latency Conditions". Lecture Notes on Software Engineering 3, nr 4 (2015): 314–17. http://dx.doi.org/10.7763/lnse.2015.v3.211.
Pełny tekst źródłaBrook, Andrew. "Low-latency distributed applications in finance". Communications of the ACM 58, nr 7 (25.06.2015): 42–50. http://dx.doi.org/10.1145/2747303.
Pełny tekst źródłaFiati, Patrick, i K. Adu Boahen Opare. "Network Architecture for Ultra Low Latency Applications". Communications on Applied Electronics 7, nr 37 (30.07.2021): 1–4. http://dx.doi.org/10.5120/cae2021652887.
Pełny tekst źródłaSowmiyaa P, Saranya P, Sabena M, Saranya R i Subhisha K. "LOW-LATENCY APPROXIMATE ADDERIN FPGA". international journal of engineering technology and management sciences 9, nr 2 (2025): 23–25. https://doi.org/10.46647/ijetms.2025.v09i02.005.
Pełny tekst źródłaGomes Lobato, Thiago Henrique, Roland Sottek i Michael Vorlaender. "Implementing neural networks in low-latency audio applications". Journal of the Acoustical Society of America 153, nr 3_supplement (1.03.2023): A105. http://dx.doi.org/10.1121/10.0018318.
Pełny tekst źródłaKavamahanga, Lambert, Theodette Uwimbabazi i Damascene Uwizeyemungu. "Low-Latency and Ultra-Reliable Communication for Industrial 5G". Journal of Current Trends in Computer Science Research 3, nr 4 (18.07.2024): 01–05. http://dx.doi.org/10.33140/jctcsr.03.04.02.
Pełny tekst źródłaLitz, Heiner, Javier Gonzalez, Ana Klimovic i Christos Kozyrakis. "RAIL: Predictable, Low Tail Latency for NVMe Flash". ACM Transactions on Storage 18, nr 1 (28.02.2022): 1–21. http://dx.doi.org/10.1145/3465406.
Pełny tekst źródłaShih, Yuan-Yao, Wei-Ho Chung, Ai-Chun Pang, Te-Chuan Chiu i Hung-Yu Wei. "Enabling Low-Latency Applications in Fog-Radio Access Networks". IEEE Network 31, nr 1 (styczeń 2017): 52–58. http://dx.doi.org/10.1109/mnet.2016.1500279nm.
Pełny tekst źródłaBrook, Andrew. "Evolution and Practice: Low-latency Distributed Applications in Finance". Queue 13, nr 4 (kwiecień 2015): 40–53. http://dx.doi.org/10.1145/2756506.2770868.
Pełny tekst źródłaBerisa, Tomaz, Kerim Fouli i Martin Maier. "Real-time PON signaling for emerging low-latency applications". Computer Communications 52 (październik 2014): 102–9. http://dx.doi.org/10.1016/j.comcom.2014.06.008.
Pełny tekst źródłaRozprawy doktorskie na temat "Low-Latency applications"
McCaffery, Duncan James. "Supporting Low Latency Interactive Distributed Collaborative Applications in Mobile Environments". Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524740.
Pełny tekst źródłaLeber, Christian [Verfasser], i Ulrich [Akademischer Betreuer] Brüning. "Efficient hardware for low latency applications / Christian Leber. Betreuer: Ulrich Brüning". Mannheim : Universitätsbibliothek Mannheim, 2012. http://d-nb.info/1034315552/34.
Pełny tekst źródłaTayarani, Najaran Mahdi. "Transport-level transactions : simple consistency for complex scalable low-latency cloud applications". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54520.
Pełny tekst źródłaScience, Faculty of
Computer Science, Department of
Graduate
Tarassu, Jonas. "GPU-Accelerated Frame Pre-Processing for Use in Low Latency Computer Vision Applications". Thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-142019.
Pełny tekst źródłaKy, Joël Roman. "Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks". Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Pełny tekst źródłaThe evolution of networks has driven the emergence of low-latency (LL) applications such as cloud gaming (CG) and cloud virtual reality (Cloud VR), which demand stringent network conditions, including low latency and high bandwidth. However, time-varying capacity networks introduce impairments such as delays, bandwidth fluctuations, and packet loss, which can significantly degrade user experience on LL applications. This research aims to design methodologies for detecting and diagnosing performance anomalies in LL applications operating over cellular and Wi- Fi networks. To achieve this, realistic experimental testbeds were established to collect datasets that characterize network performance and capture key performance indicators (KPIs) of CG and Cloud VR applications over 4G and Wi-Fi environments. These datasets serve as the foundation for evaluating and developing machine learning-based anomaly detection and diagnostic frameworks. The key contributions of this thesis include the development of CATS, a contrastive learning-based anomaly detection framework capable of efficiently identifying user experience degradation in CG applications while remaining robust to data contamination. Additionally, this research introduces RAID, a two-stage root causes diagnosis framework designed to pinpoint the root causes of performance issues in Cloud VR. RAID demonstrated high efficiency in diagnosing Wi-Fi impairments, even with limited labeled data. The findings of this work advance the fields of anomaly detection and root cause diagnosis, offering actionable insights for network operators to optimize network performance and enhance service reliability to support LL applications, which are set to revolutionize communication technologies and drive innovation across various industries
Yang, Binxu. "On the design of a cost-efficient resource management framework for low latency applications". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10053739/.
Pełny tekst źródłaTasiopoulos, A. "On the deployment of low latency network applications over third-party in-network computing resources". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049954/.
Pełny tekst źródłaSchuh, Fabian [Verfasser], i Johannes B. [Akademischer Betreuer] Huber. "Digital Communications for Low Latency and Applications for Constant Envelope Signalling / Fabian Schuh. Gutachter: Johannes B. Huber". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1083259539/34.
Pełny tekst źródłaMasoumiyan, Farzaneh. "Low-latency communications for wide area control of energy systems". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/135660/1/Farzaneh_Masoumiyan_Thesis.pdf.
Pełny tekst źródłaBrunello, Davide. "L4S in 5G networks". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284554.
Pełny tekst źródłaLow Latency Low Loss Scalable Throughput (L4S) är en teknik som syftar till att ge hög bittakt och låg fördröjning för IP-trafik, vilket också minskar sanno- likheten för paketförluster. För att nå detta mål förlitar det sig på Explicit Cong- estion Notification (ECN), en mekanism för att signalera "congestion", det vill säga köuppbyggnad i nätverket för att undvika att paketet kastas. Congestion- signalerna hanteras sedan vid avsändare och mottagarsida där skalbar anpass- ning justerar bittakten efter rådande omständigheter. I detta arbete har utma- ningarna att implementera L4S i ett 5G-nätverk analyserats. Sedan har L4S implementerats på PDCP lagret i ett 5G-nätverkssammanhang genom att an- vända en proprietär nätverkssimulator. För att utvärdera fördelarna med imple- menteringen har L4S-funktionerna använts för att stödja Augmented Reality (AR) videospelstrafik, med IETF-experimentella standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) för bitrate-kontroll. Resultaten visade att med stöd av L4S upplever videospelstrafiken lägre latens än utan stöd av L4S. Förbättringen av latens kommer med nackdelen av en minskning av bit- takt som dikteras av den inneboende avvägningen mellan bittakt och latens. I vilket fall som helst är kapacitetsminskningen med L4S rimlig, eftersom goda kapacitetsprestanda har uppnåtts även vid hög systembelastning. Vidare har paketförlustfrekvensen reducerats avsevärt tack vare införandet av L4S, och om den används i kombination med en Delay baserad schemaläggare (DBS) har en paketförluster mycket nära noll uppnåtts.
Książki na temat "Low-Latency applications"
Building Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. Packt Publishing, Limited, 2023.
Znajdź pełny tekst źródłaBuilding Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. de Gruyter GmbH, Walter, 2023.
Znajdź pełny tekst źródła6G-Enabled Edge Intelligence for Ultra -Reliable Low Latency Applications : Vision and Mission: 6g. Independently Published, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Low-Latency applications"
Lin, Shih-Chun, Tsung-Hui Chang, Eduard Jorswieck i Pin-Hsun Lin. "Applications: Low Latency Communications in 6G". W Information Theory, Mathematical Optimization, and Their Crossroads in 6G System Design, 249–309. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2016-5_7.
Pełny tekst źródłaFesquet, Laurent, i Jacques Henri Collet. "Low Latency Optical Bus for Multiprocessor Architecture". W Applications of Photonic Technology 2, 189–94. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_31.
Pełny tekst źródłaHuang, Scott C. H., Peng-Jun Wan, Xiaohua Jia i Hongwei Du. "Low-Latency Broadcast Scheduling in Ad Hoc Networks". W Wireless Algorithms, Systems, and Applications, 527–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11814856_50.
Pełny tekst źródłaHoseinyFarahabady, M. Reza, Javid Taheri, Albert Y. Zomaya i Zahir Tari. "Low Latency Execution Guarantee Under Uncertainty in Serverless Platforms". W Parallel and Distributed Computing, Applications and Technologies, 324–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96772-7_30.
Pełny tekst źródłaPark, KwangJin, MoonBae Song, Ki-Sik Kong, Sang-Won Kang, Chong-Sun Hwang, Kwang-Sik Chung i SoonYoung Jung. "Effective Low-Latency K-Nearest Neighbor Search Via Wireless Data Broadcast". W Database Systems for Advanced Applications, 900–909. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11733836_67.
Pełny tekst źródłaKim, Hyun Gon, Doo Ho Choi i Dae Young Kim. "Secure Session Key Exchange for Mobile IP Low Latency Handoffs". W Computational Science and Its Applications — ICCSA 2003, 230–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44843-8_25.
Pełny tekst źródłaBorghoff, Julia, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander i in. "PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications". W Advances in Cryptology – ASIACRYPT 2012, 208–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34961-4_14.
Pełny tekst źródłaChen, Feng. "Improving IEEE 802.15.4 for Low-Latency Energy-Efficient Industrial Applications". W Informatik aktuell, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85324-4_7.
Pełny tekst źródłaBaresi, Luciano, Danilo Filgueira Mendonça i Martin Garriga. "Empowering Low-Latency Applications Through a Serverless Edge Computing Architecture". W Service-Oriented and Cloud Computing, 196–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67262-5_15.
Pełny tekst źródłaTian, Shuangfei, Mingyi Yang i Wei Zhang. "A Practical Low Latency System for Cloud-Based VR Applications". W Communications and Networking, 73–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41117-6_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Low-Latency applications"
Wang, Xu, Christoffer Fougstedt, Lars Svensson i Per Larsson-Edefors. "Unfolded SiBM BCH Decoders for High- Throughput Low-Latency Applications". W 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 216–21. IEEE, 2024. http://dx.doi.org/10.1109/isvlsi61997.2024.00048.
Pełny tekst źródłaTabata, Den, Taiga Kobori, Yoshiki Yamaguchi, Ryouhei Tsugami, Toshihito Fujiwara, Tatsuya Fukui i Satoshi Narikawa. "Low-Latency Immersive Display Systems with FPGA for Remote Applications". W 2025 IEEE 22nd Consumer Communications & Networking Conference (CCNC), 1–2. IEEE, 2025. https://doi.org/10.1109/ccnc54725.2025.10976057.
Pełny tekst źródłaRodrigues, Rafael, Antonio M. G. Pinheiro i Touradj Ebrahimi. "Low-latency immersive content streaming over 5G networks using JPEG XS". W Applications of Digital Image Processing XLVII, redaktorzy Andrew G. Tescher i Touradj Ebrahimi, 29. SPIE, 2024. http://dx.doi.org/10.1117/12.3030948.
Pełny tekst źródłaNguyen, Minh N. T., i Van-Su Tran. "An EHF Simulation Model for Low-Latency VLEO Satellite Imagery". W 2024 IEEE Conference on Antenna Measurements and Applications (CAMA), 1–3. IEEE, 2024. https://doi.org/10.1109/cama62287.2024.10986118.
Pełny tekst źródłaManjunath, H. R., V. S. Gaikwad, T. Kuppuraj, Takveer Singh, D. Little Femilin Jana i Amit Kansal. "Efficient Parallel Processing of Stereoscopic Video Streams for Low-Latency Applications". W 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724381.
Pełny tekst źródłaRichter, Thomas, i Siegfried Fößel. "Forward error correction for low-latency transmission of JPEG XS video streams". W Applications of Digital Image Processing XLVII, redaktorzy Andrew G. Tescher i Touradj Ebrahimi, 25. SPIE, 2024. http://dx.doi.org/10.1117/12.3027984.
Pełny tekst źródłaRahimi, Mahdi. "MALARIA: Management of Low-Latency Routing Impact on Mix Network Anonymity". W 2024 22nd International Symposium on Network Computing and Applications (NCA), 193–202. IEEE, 2024. https://doi.org/10.1109/nca61908.2024.00038.
Pełny tekst źródłaMaric, I. "Low latency communications". W 2013 Information Theory and Applications Workshop (ITA 2013). IEEE, 2013. http://dx.doi.org/10.1109/ita.2013.6502956.
Pełny tekst źródłaSabater, Jordi, Martin Kluge, Sergio Bovelli i Josef Schalk. "Low-power low-latency MAC protocol for aeronautical applications". W Microtechnologies for the New Millennium, redaktorzy Thomas Becker, Carles Cané i N. Scott Barker. SPIE, 2007. http://dx.doi.org/10.1117/12.724122.
Pełny tekst źródłaZhu, Xiaoqing, Jiang Zhu, Rong Pan, Mythili Suryanarayana Prabhu i Flavio Bonomi. "Cloud-assisted streaming for low-latency applications". W 2012 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2012. http://dx.doi.org/10.1109/iccnc.2012.6167565.
Pełny tekst źródła