Artykuły w czasopismach na temat „Low Mach regime”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Low Mach regime”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Faccanoni, Gloria, Bérénice Grec, and Yohan Penel. "A homogeneous relaxation low mach number model." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 4 (2021): 1569–98. http://dx.doi.org/10.1051/m2an/2021032.
Pełny tekst źródłaJardine, M., and E. R. Priest. "Energetics of compressible models of fast steady-state magnetic reconnection." Journal of Plasma Physics 43, no. 1 (1990): 141–50. http://dx.doi.org/10.1017/s0022377800014677.
Pełny tekst źródłaJi, Zifei, Huiqiang Zhang, and Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 13 (2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Pełny tekst źródłaBaus, Franziska, Axel Klar, Nicole Marheineke, and Raimund Wegener. "Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation." Asymptotic Analysis 120, no. 1-2 (2020): 103–21. http://dx.doi.org/10.3233/asy-191581.
Pełny tekst źródłaShajii, A., and J. P. Freidberg. "Theory of low Mach number compressible flow in a channel." Journal of Fluid Mechanics 313 (April 25, 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Pełny tekst źródłaTurner, Stephen E., Lok C. Lam, Mohammad Faghri, and Otto J. Gregory. "Experimental Investigation of Gas Flow in Microchannels." Journal of Heat Transfer 126, no. 5 (2004): 753–63. http://dx.doi.org/10.1115/1.1797036.
Pełny tekst źródłaTomasini, M., N. Dolez, and J. Léorat. "Instability of a rotating shear layer in the transonic regime." Journal of Fluid Mechanics 306 (January 10, 1996): 59–82. http://dx.doi.org/10.1017/s0022112096001231.
Pełny tekst źródłaPröbsting, S., Y. Yang, H. Zhang, P. Li, Y. Liu, and Y. Li. "Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise." Physics of Fluids 34, no. 9 (2022): 094115. http://dx.doi.org/10.1063/5.0107181.
Pełny tekst źródłaBeccantini, A., E. Studer, S. Gounand, et al. "Numerical simulations of a transient injection flow at low Mach number regime." International Journal for Numerical Methods in Engineering 76, no. 5 (2008): 662–96. http://dx.doi.org/10.1002/nme.2331.
Pełny tekst źródłaDubrovin, Kirill, Lev Yarkov, Alexandr Zarvin, et al. "Numerical and Experimental Simulation of Supersonic Gas Outflow into a Low-Density Medium." Aerospace 11, no. 11 (2024): 905. http://dx.doi.org/10.3390/aerospace11110905.
Pełny tekst źródłaDegond, Pierre, and Min Tang. "All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations." Communications in Computational Physics 10, no. 1 (2011): 1–31. http://dx.doi.org/10.4208/cicp.210709.210610a.
Pełny tekst źródłaAuddy, Sayantan, Shantanu Basu, and Takahiro Kudoh. "The Magnetic Field versus Density Relation in Star-forming Molecular Clouds." Astrophysical Journal Letters 928, no. 1 (2022): L2. http://dx.doi.org/10.3847/2041-8213/ac5a5a.
Pełny tekst źródłaRadhakrishnan P, Ramanan G, Chandan Gowda H R, Meghana C K, and Chaithra A N. "Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications." ACS Journal for Science and Engineering 1, no. 1 (2021): 31–37. http://dx.doi.org/10.34293/acsjse.v1i1.5.
Pełny tekst źródłaWang, L., Y. Zhao, and S. Fu. "Computational study of drag increase due to wall roughness for hypersonic flight." Aeronautical Journal 121, no. 1237 (2017): 395–415. http://dx.doi.org/10.1017/aer.2017.9.
Pełny tekst źródłaChalons, Christophe, Mathieu Girardin, and Samuel Kokh. "An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes." Communications in Computational Physics 20, no. 1 (2016): 188–233. http://dx.doi.org/10.4208/cicp.260614.061115a.
Pełny tekst źródłaMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke, and Xiaowen Shan. "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows." Journal of Fluid Mechanics 718 (February 8, 2013): 347–70. http://dx.doi.org/10.1017/jfm.2012.616.
Pełny tekst źródłaGalié, Thomas, Jonathan Jung, Ibtissem Lannabi, and Vincent Perrier. "Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system." ESAIM: Proceedings and Surveys 76 (2024): 35–51. http://dx.doi.org/10.1051/proc/202476035.
Pełny tekst źródłaWang, Meng, Yi Liu, and Kan Wang. "Wall-pressure fluctuations in weakly compressible turbulent channel flow." Journal of the Acoustical Society of America 154, no. 4_supplement (2023): A282. http://dx.doi.org/10.1121/10.0023529.
Pełny tekst źródłaRubin, T., E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J. Fisch. "Fueling limits in a cylindrical viscosity-limited reactor." Physics of Plasmas 29, no. 8 (2022): 082302. http://dx.doi.org/10.1063/5.0101271.
Pełny tekst źródłaAlam, Mahbub, and Paul L. Voss. "Graphene quantum interference photodetector." Beilstein Journal of Nanotechnology 6 (March 12, 2015): 726–35. http://dx.doi.org/10.3762/bjnano.6.74.
Pełny tekst źródłaBarsukow, Wasilij, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek, and Friedrich K. Röpke. "A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics." Journal of Scientific Computing 72, no. 2 (2017): 623–46. http://dx.doi.org/10.1007/s10915-017-0372-4.
Pełny tekst źródłaZou, Ziqiang, Edouard Audit, Nicolas Grenier, and Christian Tenaud. "An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime." Flow, Turbulence and Combustion 105, no. 4 (2020): 1413–44. http://dx.doi.org/10.1007/s10494-020-00125-1.
Pełny tekst źródłaLi, Xiang-Yu, and Lars Mattsson. "Coagulation of inertial particles in supersonic turbulence." Astronomy & Astrophysics 648 (April 2021): A52. http://dx.doi.org/10.1051/0004-6361/202040068.
Pełny tekst źródłavan Marle, Allard Jan. "On the influence of supra-thermal particle acceleration on the morphology of low-Mach, high-β shocks". Monthly Notices of the Royal Astronomical Society 496, № 3 (2020): 3198–208. http://dx.doi.org/10.1093/mnras/staa1771.
Pełny tekst źródłaEiximeno, Benet, Carlos Tur-Mongé, Oriol Lehmkuhl, and Ivette Rodríguez. "Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder." Fluids 8, no. 8 (2023): 236. http://dx.doi.org/10.3390/fluids8080236.
Pełny tekst źródłaHuet, Maxime, and Alexis Giauque. "A nonlinear model for indirect combustion noise through a compact nozzle." Journal of Fluid Mechanics 733 (September 23, 2013): 268–301. http://dx.doi.org/10.1017/jfm.2013.442.
Pełny tekst źródłaGat, Ilana, Georgios Matheou, Daniel Chung, and Paul E. Dimotakis. "Incompressible variable-density turbulence in an external acceleration field." Journal of Fluid Mechanics 827 (August 24, 2017): 506–35. http://dx.doi.org/10.1017/jfm.2017.490.
Pełny tekst źródłaDoshi, Parshwanath S., Rajesh Ranjan, and Datta V. Gaitonde. "Global and local modal characteristics of supersonic open cavity flows." Physics of Fluids 34, no. 3 (2022): 034104. http://dx.doi.org/10.1063/5.0082808.
Pełny tekst źródłaCHANG, KEH-CHIN, and WEN-CHUNG WU. "A STUDY ON FLOW REGIME NEAR CRITICAL RAYLEIGH NUMBER FOR BUOYANCY-DRIVEN CAVITY FLOW." Modern Physics Letters B 19, no. 28n29 (2005): 1635–38. http://dx.doi.org/10.1142/s0217984905010098.
Pełny tekst źródłaTabrizi, Amir Bashirzadeh, and Binxin Wu. "The role of compressibility in computing noise generated at a cavitating orifice." International Journal of Aeroacoustics 18, no. 1 (2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Pełny tekst źródłaVera, M., H. P. Hodson, and R. Vazquez. "The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade." Journal of Turbomachinery 127, no. 4 (2004): 747–54. http://dx.doi.org/10.1115/1.1934446.
Pełny tekst źródłaProença, A. R., O. De almeida, and R. H. Self. "AERODYNAMICS AND AEROACOUSTICS SURVEY FOR A LOW SPEED SUBSONIC JET OPERATING AT MACH 0.25." Revista de Engenharia Térmica 13, no. 2 (2014): 33. http://dx.doi.org/10.5380/reterm.v13i2.62092.
Pełny tekst źródłaTahani, Mojtaba, Mohammad Hojaji, and Seyed Vahid Mahmoodi Jezeh. "Turbulent jet in crossflow analysis with LES approach." Aircraft Engineering and Aerospace Technology 88, no. 6 (2016): 717–28. http://dx.doi.org/10.1108/aeat-10-2014-0167.
Pełny tekst źródłaGouasmi, Ayoub, Scott M. Murman, and Karthik Duraisamy. "Entropy-stable schemes in the low-Mach-number regime: Flux-preconditioning, entropy breakdowns, and entropy transfers." Journal of Computational Physics 456 (May 2022): 111036. http://dx.doi.org/10.1016/j.jcp.2022.111036.
Pełny tekst źródłaKalita, B. C., та N. Devi. "Kinetic Alfvén solitons in a low-β plasma under the influence of electron drift motion". Journal of Plasma Physics 56, № 1 (1996): 35–44. http://dx.doi.org/10.1017/s0022377800019073.
Pełny tekst źródłaDeng, S., B. W. van Oudheusden, T. Xiao, and H. Bijl. "A Computational Study on the Aerodynamic Influence of a Propeller on an MAV by Unstructured Overset Grid Technique and Low Mach Number Preconditioning." Open Aerospace Engineering Journal 5, no. 1 (2012): 11–21. http://dx.doi.org/10.2174/1874146001205010011.
Pełny tekst źródłaKhayat, Roger E., and Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid." Canadian Journal of Physics 71, no. 11-12 (1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Pełny tekst źródłaGuillon, Kévin, Romane Hélie, and Philippe Helluy. "Stability analysis of the vectorial Lattice-Boltzmann method." ESAIM: Proceedings and Surveys 77 (2024): 46–78. http://dx.doi.org/10.1051/proc/202477046.
Pełny tekst źródłaDesjacques, Vincent, Adi Nusser, and Robin Bühler. "Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers." Astrophysical Journal 928, no. 1 (2022): 64. http://dx.doi.org/10.3847/1538-4357/ac5519.
Pełny tekst źródłaVilquin, Alexandre, Hamid Kellay, and Jean-François Boudet. "Shock waves induced by a planar obstacle in a vibrated granular gas." Journal of Fluid Mechanics 842 (March 7, 2018): 163–87. http://dx.doi.org/10.1017/jfm.2018.128.
Pełny tekst źródłaWu, J. S., S. Y. Chou, U. M. Lee, Y. L. Shao, and Y. Y. Lian. "Parallel DSMC Simulation of a Single Under-Expanded Free Orifice Jet From Transition to Near-Continuum Regime." Journal of Fluids Engineering 127, no. 6 (2005): 1161–70. http://dx.doi.org/10.1115/1.2062807.
Pełny tekst źródłaDimarco, Giacomo, Raphaël Loubère, Victor Michel-Dansac, and Marie-Hélène Vignal. "Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime." Journal of Computational Physics 372 (November 2018): 178–201. http://dx.doi.org/10.1016/j.jcp.2018.06.022.
Pełny tekst źródłaRieper, Felix, and Georg Bader. "The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime." Journal of Computational Physics 228, no. 8 (2009): 2918–33. http://dx.doi.org/10.1016/j.jcp.2009.01.002.
Pełny tekst źródłaYamouni, Sami, Denis Sipp, and Laurent Jacquin. "Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis." Journal of Fluid Mechanics 717 (February 1, 2013): 134–65. http://dx.doi.org/10.1017/jfm.2012.563.
Pełny tekst źródłaGILL, TARSEM SINGH, HARVINDER KAUR, and NARESHPAL SINGH SAINI. "Dust-acoustic solitary waves in a finite temperature dusty plasma with variable dust charge and two temperature ions." Journal of Plasma Physics 70, no. 4 (2004): 481–95. http://dx.doi.org/10.1017/s0022377803002733.
Pełny tekst źródłaYan, Chian, Hong Hui Teng, Xiao Cheng Mi, and Hoi Dick Ng. "The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves." Aerospace 6, no. 6 (2019): 62. http://dx.doi.org/10.3390/aerospace6060062.
Pełny tekst źródłaCollé, Anthony, Jérôme Limido, and Jean-Paul Vila. "An Accurate SPH Scheme for Dynamic Fragmentation modelling." EPJ Web of Conferences 183 (2018): 01030. http://dx.doi.org/10.1051/epjconf/201818301030.
Pełny tekst źródłaFeireisl, Eduard, Mária Lukáčová-Medviďová, Šárka Nečasová, Antonín Novotný, and Bangwei She. "Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime." Multiscale Modeling & Simulation 16, no. 1 (2018): 150–83. http://dx.doi.org/10.1137/16m1094233.
Pełny tekst źródłaMAYER, CHRISTIAN S. J., DOMINIC A. VON TERZI, and HERMANN F. FASEL. "Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3." Journal of Fluid Mechanics 674 (January 13, 2011): 5–42. http://dx.doi.org/10.1017/s0022112010005094.
Pełny tekst źródłaTheofanous, T. G., G. J. Li, and T. N. Dinh. "Aerobreakup in Rarefied Supersonic Gas Flows." Journal of Fluids Engineering 126, no. 4 (2004): 516–27. http://dx.doi.org/10.1115/1.1777234.
Pełny tekst źródła