Gotowa bibliografia na temat „Low-Rank matrix approximation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low-Rank matrix approximation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Low-Rank matrix approximation"
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen, and and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation." Chinese Optics Letters 14, no. 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Pełny tekst źródłaParekh, Ankit, and Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation." IEEE Signal Processing Letters 23, no. 4 (2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Pełny tekst źródłaFomin, Fedor V., Petr A. Golovach, and Fahad Panolan. "Parameterized low-rank binary matrix approximation." Data Mining and Knowledge Discovery 34, no. 2 (2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Pełny tekst źródłaFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems." ACM Transactions on Algorithms 16, no. 1 (2020): 1–39. http://dx.doi.org/10.1145/3365653.
Pełny tekst źródłaJia, Yuheng, Hui Liu, Junhui Hou, and Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Pełny tekst źródłaZhenyue Zhang and Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 7 (2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Pełny tekst źródłaXu, An-Bao, and Dongxiu Xie. "Low-rank approximation pursuit for matrix completion." Mechanical Systems and Signal Processing 95 (October 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Pełny tekst źródłaBarlow, Jesse L., and Hasan Erbay. "Modifiable low-rank approximation to a matrix." Numerical Linear Algebra with Applications 16, no. 10 (2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Pełny tekst źródłaZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang, and Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging." Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Pełny tekst źródłaSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation." Electronic Journal of Linear Algebra 37 (July 23, 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Pełny tekst źródłaRozprawy doktorskie na temat "Low-Rank matrix approximation"
Robeyns, Matthieu. "Mixed precision algorithms for low-rank matrix and tensor approximations." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG095.
Pełny tekst źródłaBlanchard, Pierre. "Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0016/document.
Pełny tekst źródłaLee, Joonseok. "Local approaches for collaborative filtering." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53846.
Pełny tekst źródłaKim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.
Pełny tekst źródłaGalvin, Timothy Matthew. "Faster streaming algorithms for low-rank matrix approximations." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91810.
Pełny tekst źródłaAbbas, Kinan. "Dématriçage et démélange conjoints d'images multispectrales." Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0710.
Pełny tekst źródłaCastorena, Juan. "Remote-Sensed LIDAR Using Random Impulsive Scans." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581855.
Pełny tekst źródłaVinyes, Marina. "Convex matrix sparsity for demixing with an application to graphical model structure estimation." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1130/document.
Pełny tekst źródłaSadek, El Mostafa. "Méthodes itératives pour la résolution d'équations matricielles." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0434/document.
Pełny tekst źródłaWinkler, Anderson M. "Widening the applicability of permutation inference." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ce166876-0aa3-449e-8496-f28bf189960c.
Pełny tekst źródłaCzęści książek na temat "Low-Rank matrix approximation"
Kannan, Ramakrishnan, Mariya Ishteva, Barry Drake, and Haesun Park. "Bounded Matrix Low Rank Approximation." In Signals and Communication Technology. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48331-2_4.
Pełny tekst źródłaFriedland, Shmuel, and Venu Tammali. "Low-Rank Approximation of Tensors." In Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15260-8_14.
Pełny tekst źródłaDewilde, Patrick, and Alle-Jan van der Veen. "Low-Rank Matrix Approximation and Subspace Tracking." In Time-Varying Systems and Computations. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2817-0_11.
Pełny tekst źródłaZhang, Huaxiang, Zhichao Wang, and Linlin Cao. "Fast Nyström for Low Rank Matrix Approximation." In Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35527-1_38.
Pełny tekst źródłaDeshpande, Amit, and Santosh Vempala. "Adaptive Sampling and Fast Low-Rank Matrix Approximation." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_28.
Pełny tekst źródłaEvensen, Geir, Femke C. Vossepoel, and Peter Jan van Leeuwen. "Localization and Inflation." In Springer Textbooks in Earth Sciences, Geography and Environment. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96709-3_10.
Pełny tekst źródłaLi, Chong-Ya, Wenzheng Bao, Zhipeng Li, Youhua Zhang, Yong-Li Jiang, and Chang-An Yuan. "Local Sensitive Low Rank Matrix Approximation via Nonconvex Optimization." In Intelligent Computing Methodologies. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63315-2_67.
Pełny tekst źródłaWacira, Joseph Muthui, Dinna Ranirina, and Bubacarr Bah. "Low Rank Matrix Approximation for Imputing Missing Categorical Data." In Artificial Intelligence Research. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95070-5_16.
Pełny tekst źródłaWu, Jiangang, and Shizhong Liao. "Accuracy-Preserving and Scalable Column-Based Low-Rank Matrix Approximation." In Knowledge Science, Engineering and Management. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25159-2_22.
Pełny tekst źródłaMantzaflaris, Angelos, Bert Jüttler, B. N. Khoromskij, and Ulrich Langer. "Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation." In Curves and Surfaces. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22804-4_24.
Pełny tekst źródłaStreszczenia konferencji na temat "Low-Rank matrix approximation"
Kannan, Ramakrishnan, Mariya Ishteva, and Haesun Park. "Bounded Matrix Low Rank Approximation." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.131.
Pełny tekst źródłaLi, Chong-Ya, Lin Zhu, Wen-Zheng Bao, Yong-Li Jiang, Chang-An Yuan, and De-Shuang Huang. "Convex local sensitive low rank matrix approximation." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965863.
Pełny tekst źródłavan der Veen, Alle-Jan. "Schur method for low-rank matrix approximation." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Franklin T. Luk. SPIE, 1994. http://dx.doi.org/10.1117/12.190848.
Pełny tekst źródłaNadakuditi, Raj Rao. "Exploiting random matrix theory to improve noisy low-rank matrix approximation." In 2011 45th Asilomar Conference on Signals, Systems and Computers. IEEE, 2011. http://dx.doi.org/10.1109/acssc.2011.6190110.
Pełny tekst źródłaTatsukawa, Manami, and Mirai Tanaka. "Box Constrained Low-rank Matrix Approximation with Missing Values." In 7th International Conference on Operations Research and Enterprise Systems. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006612100780084.
Pełny tekst źródłaYinqiang Zheng, Guangcan Liu, S. Sugimoto, Shuicheng Yan, and M. Okutomi. "Practical low-rank matrix approximation under robust L1-norm." In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247828.
Pełny tekst źródłaAlelyani, Salem, and Huan Liu. "Supervised Low Rank Matrix Approximation for Stable Feature Selection." In 2012 Eleventh International Conference on Machine Learning and Applications (ICMLA). IEEE, 2012. http://dx.doi.org/10.1109/icmla.2012.61.
Pełny tekst źródłaLiu, Yang, Wenji Chen, and Yong Guan. "Monitoring Traffic Activity Graphs with low-rank matrix approximation." In 2012 IEEE 37th Conference on Local Computer Networks (LCN 2012). IEEE, 2012. http://dx.doi.org/10.1109/lcn.2012.6423680.
Pełny tekst źródłaWang, Hengyou, Ruizhen Zhao, Yigang Cen, and Fengzhen Zhang. "Low-rank matrix recovery based on smooth function approximation." In 2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016. http://dx.doi.org/10.1109/icsp.2016.7877928.
Pełny tekst źródłaKaloorazi, Maboud F., and Jie Chen. "Low-rank Matrix Approximation Based on Intermingled Randomized Decomposition." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683284.
Pełny tekst źródła