Artykuły w czasopismach na temat „Low-Rank matrix approximation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Low-Rank matrix approximation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen, and and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation." Chinese Optics Letters 14, no. 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Pełny tekst źródłaParekh, Ankit, and Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation." IEEE Signal Processing Letters 23, no. 4 (2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Pełny tekst źródłaFomin, Fedor V., Petr A. Golovach, and Fahad Panolan. "Parameterized low-rank binary matrix approximation." Data Mining and Knowledge Discovery 34, no. 2 (2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Pełny tekst źródłaFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems." ACM Transactions on Algorithms 16, no. 1 (2020): 1–39. http://dx.doi.org/10.1145/3365653.
Pełny tekst źródłaJia, Yuheng, Hui Liu, Junhui Hou, and Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Pełny tekst źródłaZhenyue Zhang and Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 7 (2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Pełny tekst źródłaXu, An-Bao, and Dongxiu Xie. "Low-rank approximation pursuit for matrix completion." Mechanical Systems and Signal Processing 95 (October 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Pełny tekst źródłaBarlow, Jesse L., and Hasan Erbay. "Modifiable low-rank approximation to a matrix." Numerical Linear Algebra with Applications 16, no. 10 (2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Pełny tekst źródłaZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang, and Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging." Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Pełny tekst źródłaSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation." Electronic Journal of Linear Algebra 37 (July 23, 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Pełny tekst źródłaTropp, Joel A., Alp Yurtsever, Madeleine Udell, and Volkan Cevher. "Practical Sketching Algorithms for Low-Rank Matrix Approximation." SIAM Journal on Matrix Analysis and Applications 38, no. 4 (2017): 1454–85. http://dx.doi.org/10.1137/17m1111590.
Pełny tekst źródłaLiu, Huafeng, Liping Jing, Yuhua Qian, and Jian Yu. "Adaptive Local Low-rank Matrix Approximation for Recommendation." ACM Transactions on Information Systems 37, no. 4 (2019): 1–34. http://dx.doi.org/10.1145/3360488.
Pełny tekst źródłaPersson, David, and Daniel Kressner. "Randomized Low-Rank Approximation of Monotone Matrix Functions." SIAM Journal on Matrix Analysis and Applications 44, no. 2 (2023): 894–918. http://dx.doi.org/10.1137/22m1523923.
Pełny tekst źródłaAmini, Arash, Amin Karbasi, and Farokh Marvasti. "Low-Rank Matrix Approximation Using Point-Wise Operators." IEEE Transactions on Information Theory 58, no. 1 (2012): 302–10. http://dx.doi.org/10.1109/tit.2011.2167714.
Pełny tekst źródłaHou, Junhui, Lap-Pui Chau, Nadia Magnenat-Thalmann, and Ying He. "Sparse Low-Rank Matrix Approximation for Data Compression." IEEE Transactions on Circuits and Systems for Video Technology 27, no. 5 (2017): 1043–54. http://dx.doi.org/10.1109/tcsvt.2015.2513698.
Pełny tekst źródłaZhang, Zhenyue, and Lixin Wu. "Optimal low-rank approximation to a correlation matrix." Linear Algebra and its Applications 364 (May 2003): 161–87. http://dx.doi.org/10.1016/s0024-3795(02)00551-7.
Pełny tekst źródłaGillis, Nicolas, and Yaroslav Shitov. "Low-rank matrix approximation in the infinity norm." Linear Algebra and its Applications 581 (November 2019): 367–82. http://dx.doi.org/10.1016/j.laa.2019.07.017.
Pełny tekst źródłaSong, Guang-Jing, and Michael K. Ng. "Nonnegative low rank matrix approximation for nonnegative matrices." Applied Mathematics Letters 105 (July 2020): 106300. http://dx.doi.org/10.1016/j.aml.2020.106300.
Pełny tekst źródłavan der Veen, Alle-Jan. "A Schur Method for Low-Rank Matrix Approximation." SIAM Journal on Matrix Analysis and Applications 17, no. 1 (1996): 139–60. http://dx.doi.org/10.1137/s0895479893261340.
Pełny tekst źródłaSun, Dongxia, and Lihong Zhi. "Structured Low Rank Approximation of a Bezout Matrix." Mathematics in Computer Science 1, no. 2 (2007): 427–37. http://dx.doi.org/10.1007/s11786-007-0014-6.
Pełny tekst źródłaMena, Hermann, Alexander Ostermann, Lena-Maria Pfurtscheller, and Chiara Piazzola. "Numerical low-rank approximation of matrix differential equations." Journal of Computational and Applied Mathematics 340 (October 2018): 602–14. http://dx.doi.org/10.1016/j.cam.2018.01.035.
Pełny tekst źródłaZhu, E., M. Xu, and D. Pi. "A Novel Robust Principal Component Analysis Algorithm of Nonconvex Rank Approximation." Mathematical Problems in Engineering 2020 (September 30, 2020): 1–17. http://dx.doi.org/10.1155/2020/9356935.
Pełny tekst źródłaFernández-Val, Iván, Hugo Freeman, and Martin Weidner. "Low-rank approximations of nonseparable panel models." Econometrics Journal 24, no. 2 (2021): C40—C77. http://dx.doi.org/10.1093/ectj/utab007.
Pełny tekst źródłaChen, Zhilong, Peng Wang, and Detong Zhu. "Approximation Conjugate Gradient Method for Low-Rank Matrix Recovery." Symmetry 16, no. 5 (2024): 547. http://dx.doi.org/10.3390/sym16050547.
Pełny tekst źródłaChang, Xiangyu, Yan Zhong, Yao Wang, and Shaobo Lin. "Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation." IEEE Transactions on Neural Networks and Learning Systems 30, no. 2 (2019): 474–85. http://dx.doi.org/10.1109/tnnls.2018.2844242.
Pełny tekst źródłaMatveev, Sergey, and Stanislav Budzinskiy. "Sketching for a low-rank nonnegative matrix approximation: Numerical study." Russian Journal of Numerical Analysis and Mathematical Modelling 38, no. 2 (2023): 99–114. http://dx.doi.org/10.1515/rnam-2023-0009.
Pełny tekst źródłaHorasan, Fahrettin, Hasan Erbay, Fatih Varçın, and Emre Deniz. "Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis." Scientific Programming 2019 (February 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/1095643.
Pełny tekst źródłaNie, Feiping, Zhanxuan Hu, and Xuelong Li. "Matrix Completion Based on Non-Convex Low-Rank Approximation." IEEE Transactions on Image Processing 28, no. 5 (2019): 2378–88. http://dx.doi.org/10.1109/tip.2018.2886712.
Pełny tekst źródłaZheng, Jianwei, Mengjie Qin, Xiaolong Zhou, Jiafa Mao, and Hongchuan Yu. "Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation." IEEE Transactions on Industrial Informatics 16, no. 1 (2020): 488–500. http://dx.doi.org/10.1109/tii.2019.2916986.
Pełny tekst źródłaPitaval, Renaud-Alexandre, Wei Dai, and Olav Tirkkonen. "Convergence of Gradient Descent for Low-Rank Matrix Approximation." IEEE Transactions on Information Theory 61, no. 8 (2015): 4451–57. http://dx.doi.org/10.1109/tit.2015.2448695.
Pełny tekst źródłaPei Chen. "Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm." IEEE Transactions on Signal Processing 56, no. 4 (2008): 1429–39. http://dx.doi.org/10.1109/tsp.2007.909353.
Pełny tekst źródłaDuan, Xuefeng, Jiaofen Li, Qingwen Wang, and Xinjun Zhang. "Low rank approximation of the symmetric positive semidefinite matrix." Journal of Computational and Applied Mathematics 260 (April 2014): 236–43. http://dx.doi.org/10.1016/j.cam.2013.09.080.
Pełny tekst źródłaMohd Sagheer, Sameera V., and Sudhish N. George. "Ultrasound image despeckling using low rank matrix approximation approach." Biomedical Signal Processing and Control 38 (September 2017): 236–49. http://dx.doi.org/10.1016/j.bspc.2017.06.011.
Pełny tekst źródłaLuo, Yu, and Jie Ling. "Single-image de-raining using low-rank matrix approximation." Neural Computing and Applications 32, no. 11 (2019): 7503–14. http://dx.doi.org/10.1007/s00521-019-04271-0.
Pełny tekst źródłaLi, Chi-Kwong, and Gilbert Strang. "An elementary proof of Mirsky's low rank approximation theorem." Electronic Journal of Linear Algebra 36, no. 36 (2020): 694–97. http://dx.doi.org/10.13001/ela.2020.5551.
Pełny tekst źródłaShi, Chengfei, Zhengdong Huang, Li Wan, and Tifan Xiong. "Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization." Journal of Scientific Computing 80, no. 3 (2019): 1888–912. http://dx.doi.org/10.1007/s10915-019-01009-x.
Pełny tekst źródłaLebedeva, O. S., A. I. Osinsky, and S. V. Petrov. "Low-Rank Approximation Algorithms for Matrix Completion with Random Sampling." Computational Mathematics and Mathematical Physics 61, no. 5 (2021): 799–815. http://dx.doi.org/10.1134/s0965542521050122.
Pełny tekst źródłaHuang, Zhi-Long, and Hsu-Feng Hsiao. "Inter-frame Prediction with Fast Weighted Low-rank Matrix Approximation." International Journal of Electronics and Telecommunications 59, no. 1 (2013): 9–16. http://dx.doi.org/10.2478/eletel-2013-0001.
Pełny tekst źródłaKirsteins, I. P., and D. W. Tufts. "Adaptive detection using low rank approximation to a data matrix." IEEE Transactions on Aerospace and Electronic Systems 30, no. 1 (1994): 55–67. http://dx.doi.org/10.1109/7.250406.
Pełny tekst źródłaHutchings, Matthew, and Bertrand Gauthier. "Energy-Based Sequential Sampling for Low-Rank PSD-Matrix Approximation." SIAM Journal on Mathematics of Data Science 6, no. 4 (2024): 1055–77. http://dx.doi.org/10.1137/23m162449x.
Pełny tekst źródłaXu, Fei, Jingqi Han, Yongli Wang, et al. "Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix Approximation." IEEE Access 5 (2017): 1958–66. http://dx.doi.org/10.1109/access.2017.2657645.
Pełny tekst źródłaZhou, Guoxu, Andrzej Cichocki, and Shengli Xie. "Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation." IEEE Transactions on Signal Processing 60, no. 6 (2012): 2928–40. http://dx.doi.org/10.1109/tsp.2012.2190410.
Pełny tekst źródłaNechepurenko, Yuri M., and Miloud Sadkane. "A Low-Rank Approximation for Computing the Matrix Exponential Norm." SIAM Journal on Matrix Analysis and Applications 32, no. 2 (2011): 349–63. http://dx.doi.org/10.1137/100789774.
Pełny tekst źródłaShen, Haipeng, and Jianhua Z. Huang. "Sparse principal component analysis via regularized low rank matrix approximation." Journal of Multivariate Analysis 99, no. 6 (2008): 1015–34. http://dx.doi.org/10.1016/j.jmva.2007.06.007.
Pełny tekst źródłaFeng, Xingdong, and Xuming He. "Statistical inference based on robust low-rank data matrix approximation." Annals of Statistics 42, no. 1 (2014): 190–210. http://dx.doi.org/10.1214/13-aos1186.
Pełny tekst źródłaGillard, J. W., and A. A. Zhigljavsky. "Stochastic algorithms for solving structured low-rank matrix approximation problems." Communications in Nonlinear Science and Numerical Simulation 21, no. 1-3 (2015): 70–88. http://dx.doi.org/10.1016/j.cnsns.2014.08.023.
Pełny tekst źródłaChang, Haixia. "Constrained Low Rank Approximation of the Hermitian Nonnegative-Definite Matrix." Advances in Linear Algebra & Matrix Theory 10, no. 02 (2020): 22–33. http://dx.doi.org/10.4236/alamt.2020.102003.
Pełny tekst źródłaChen, Yongyong, Yanwen Guo, Yongli Wang, Dong Wang, Chong Peng, and Guoping He. "Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation." IEEE Transactions on Geoscience and Remote Sensing 55, no. 9 (2017): 5366–80. http://dx.doi.org/10.1109/tgrs.2017.2706326.
Pełny tekst źródłaInoue, Kohei, and Kiichi Urahama. "Dimensionality reduction by simultaneous low-rank approximation of matrix data." Electronics and Communications in Japan (Part II: Electronics) 90, no. 9 (2007): 42–49. http://dx.doi.org/10.1002/ecjb.20379.
Pełny tekst źródłaChang, Haixia, Chunmei Li, and Longsheng Liu. "Generalized low-rank approximation to the symmetric positive semidefinite matrix." AIMS Mathematics 10, no. 4 (2025): 8022–35. https://doi.org/10.3934/math.2025368.
Pełny tekst źródła