Gotowa bibliografia na temat „Machine Learning Informé”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Machine Learning Informé”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Machine Learning Informé"
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Pełny tekst źródłaPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (2023): 6892. http://dx.doi.org/10.3390/app13126892.
Pełny tekst źródłaMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Pełny tekst źródłaXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Pełny tekst źródłaZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Pełny tekst źródłaSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Pełny tekst źródłaArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Pełny tekst źródłaKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Pełny tekst źródłaOneto, Luca, Sandro Ridella, and Davide Anguita. "Informed Machine Learning: Excess risk and generalization." Neurocomputing 646 (September 2025): 130521. https://doi.org/10.1016/j.neucom.2025.130521.
Pełny tekst źródłaZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Pełny tekst źródłaRozprawy doktorskie na temat "Machine Learning Informé"
Guimbaud, Jean-Baptiste. "Enhancing Environmental Risk Scores with Informed Machine Learning and Explainable AI." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10188.
Pełny tekst źródłaDoumèche, Nathan. "Physics-informed machine learning : a mathematical framework with applications to time series forecasting." Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS105.
Pełny tekst źródłaQuattromini, Michele. "Graph Neural Networks for fluid mechanics : data-assimilation and optimization." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST161.
Pełny tekst źródłaMack, Jonas. "Physics Informed Machine Learning of Nonlinear Partial Differential Equations." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Pełny tekst źródłaLeung, Jason W. "Application of machine learning : automated trading informed by event driven data." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105982.
Pełny tekst źródłaWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Pełny tekst źródłaElabid, Zakaria. "Informed deep learning for modeling physical dynamics." Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS006.
Pełny tekst źródłaReichert, Nils. "CORRELATION BETWEEN COMPUTER RECOGNIZED FACIAL EMOTIONS AND INFORMED EMOTIONS DURING A CASINO COMPUTER GAME." Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44596.
Pełny tekst źródłaWang, Jianxun. "Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Pełny tekst źródłaCedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Pełny tekst źródłaKsiążki na temat "Machine Learning Informé"
Schulz, Daniel, and Christian Bauckhage, eds. Informed Machine Learning. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-83097-6.
Pełny tekst źródłaHuang, Qiang. Domain-informed Machine Learning for Smart Manufacturing. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-91631-1.
Pełny tekst źródłaInterpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaMadhu, G., Sandeep Kautish, A. Govardhan, and Avinash Sharma, eds. Emerging Computational Approaches in Telehealth and Telemedicine: A Look at The Post-COVID-19 Landscape. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150792721220101.
Pełny tekst źródłaSmith, Gary, and Jay Cordes. The 9 Pitfalls of Data Science. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844396.001.0001.
Pełny tekst źródłaAnderson, Raymond A. Credit Intelligence & Modelling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.001.0001.
Pełny tekst źródłaEl-Nasr, Magy Seif, Alessandro Canossa, Truong-Huy D. Nguyen, and Anders Drachen. Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.001.0001.
Pełny tekst źródłaDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Pełny tekst źródłaOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes, eds. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Pełny tekst źródłaGiudici, Paolo, and Giulio Mignola. Big Data & Advanced Analytics per il Risk Management. AIFIRM, 2022. http://dx.doi.org/10.47473/2016ppa00035.
Pełny tekst źródłaCzęści książek na temat "Machine Learning Informé"
Bauckhage, Christian, and Rafet Sifa. "Training Support Vector Machines by Solving Differential Equations." In Cognitive Technologies. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-83097-6_12.
Pełny tekst źródłaNeuer, Marcus J. "Physics-Informed Learning." In Machine Learning for Engineers. Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69995-9_6.
Pełny tekst źródłaBraga-Neto, Ulisses. "Physics-Informed Machine Learning." In Fundamentals of Pattern Recognition and Machine Learning. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-60950-3_12.
Pełny tekst źródłaWang, Sifan, and Paris Perdikaris. "Adaptive Training Strategies for Physics-Informed Neural Networks." In Knowledge-Guided Machine Learning. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Pełny tekst źródłaSimm, Jaak, Adam Arany, Edward De Brouwer, and Yves Moreau. "Expressive Graph Informer Networks." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_15.
Pełny tekst źródłaTsironis, Giorgos. "Epidemiology with Physics Informed Machine Learning." In Understanding Complex Systems. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-81946-9_18.
Pełny tekst źródłaAfroze, Lameya, Silke Merkelbach, Sebastian von Enzberg, and Roman Dumitrescu. "Domain Knowledge Injection Guidance for Predictive Maintenance." In Machine Learning for Cyber-Physical Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47062-2_8.
Pełny tekst źródłaSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih, and Zhi Zhong. "Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey." In Knowledge-Guided Machine Learning. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Pełny tekst źródłaHuang, Qiang. "Applications of Process-Informed Optimal Compensation." In Domain-informed Machine Learning for Smart Manufacturing. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-91631-1_7.
Pełny tekst źródłaDani, Harsh, Jundong Li, and Huan Liu. "Sentiment Informed Cyberbullying Detection in Social Media." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Machine Learning Informé"
Oneto, Luca, Nicolò Navarin, Alessio Micheli, et al. "Informed Machine Learning for Complex Data." In ESANN 2024. Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-1.
Pełny tekst źródłaOneto, Luca, Davide Anguita, and Sandro Ridella. "Informed Machine Learning: Excess Risk and Generalization." In ESANN 2024. Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-20.
Pełny tekst źródłaOsorio Quero, Carlos Alexander, and Jose Martinez-Carranza. "Physics-Informed Machine Learning for UAV Control." In 2024 21st International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2024. https://doi.org/10.1109/cce62852.2024.10770871.
Pełny tekst źródłaFarlessyost, William, and Shweta Singh. "Improving Mechanistic Model Accuracy with Machine Learning Informed Physics." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.121371.
Pełny tekst źródłaYu, Yue, Jiageng Tong, Jinhui Xia, Jinya Su, and Shihua Li. "PMSM System Identification by Knowledge-informed Machine Learning." In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN). IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774223.
Pełny tekst źródłaZhu, Shijie, Hao Li, Yejie Jiang, and Yingjun Deng. "Inner Defect Detection via Physics-Informed Machine Learning." In 2024 6th International Conference on System Reliability and Safety Engineering (SRSE). IEEE, 2024. https://doi.org/10.1109/srse63568.2024.10772527.
Pełny tekst źródłaZhang, Tianren, Yuanbin Wang, Ruizhe Dong, Wenhu Wang, Zhongxue Yang, and Mingzhu Zhu. "Informed Machine Learning for Real-time Grinding Force Prediction." In 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746047.
Pełny tekst źródłaLiu, Zheng, Yuan Jiang, Yumeng Li, and Pingfeng Wang. "Physics-Informed Machine Learning for Battery Pack Thermal Management." In 2025 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2025. https://doi.org/10.1109/rams48127.2025.10935157.
Pełny tekst źródłaSampath, Akila, Omar Faruque, Azim Khan, Vandana Janeja, and Jianwu Wang. "Physics-Informed Machine Learning for Sea Ice Thickness Prediction." In 2024 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2024. https://doi.org/10.1109/ickg63256.2024.00048.
Pełny tekst źródłaPark, Taegyun, Eunkoo Lee, Sol Han, et al. "Chemistry-informed machine learning model for EUV photoresist development." In Advances in Patterning Materials and Processes XLII, edited by Douglas Guerrero and Ryan Callahan. SPIE, 2025. https://doi.org/10.1117/12.3049907.
Pełny tekst źródłaRaporty organizacyjne na temat "Machine Learning Informé"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706217.
Pełny tekst źródłaMcDermott, Jason, Song Feng, Christine Chang, Darren Schmidt, and Vincent Danna. Structural- and Functional-Informed Machine Learning for Protein Function Prediction. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1988630.
Pełny tekst źródłaGuthrie, George Drake Jr, and Hari S. Viswanathan. Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1614818.
Pełny tekst źródłaWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino, and Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1562229.
Pełny tekst źródłaBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, 2024. http://dx.doi.org/10.17760/d20680141.
Pełny tekst źródłaPasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning: Theory, Simulation, and Scientific Computing. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv125.
Pełny tekst źródłaMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769743.
Pełny tekst źródłaAthon, Matthew, Danielle Ciesielski, Jordan Corbey, et al. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2338176.
Pełny tekst źródłaHeo, YeongAe, Joshua Humberston, and Jose Barreras Gonzalez. Evolving Multi-hazard Machine Learning Modeling for Advanced Risk-Informed Infrastructure Resilience Assessment. Office of Scientific and Technical Information (OSTI), 2024. https://doi.org/10.2172/2483390.
Pełny tekst źródłaUllrich, Paul, Tapio Schneider, and Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769762.
Pełny tekst źródła