Artykuły w czasopismach na temat „Machine Learning Informé”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Machine Learning Informé”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Pełny tekst źródłaPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (2023): 6892. http://dx.doi.org/10.3390/app13126892.
Pełny tekst źródłaMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Pełny tekst źródłaXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Pełny tekst źródłaZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Pełny tekst źródłaSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Pełny tekst źródłaArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Pełny tekst źródłaKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Pełny tekst źródłaOneto, Luca, Sandro Ridella, and Davide Anguita. "Informed Machine Learning: Excess risk and generalization." Neurocomputing 646 (September 2025): 130521. https://doi.org/10.1016/j.neucom.2025.130521.
Pełny tekst źródłaZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Pełny tekst źródłaLiu, Yang, Ruo Jia, Jieping Ye, and Xiaobo Qu. "How machine learning informs ride-hailing services: A survey." Communications in Transportation Research 2 (December 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Pełny tekst źródłaWang, Yingxu, Yousheng Tian, and Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra." International Journal of Cognitive Informatics and Natural Intelligence 5, no. 3 (2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Pełny tekst źródłaSchwartz, Oscar. "Competing Visions for AI." Digital Culture & Society 4, no. 1 (2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Pełny tekst źródłaHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions." Evidence Based Library and Information Practice 19, no. 2 (2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Pełny tekst źródłaBerk, Richard, and Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions." Federal Sentencing Reporter 27, no. 4 (2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Pełny tekst źródłaPandey, Mrs Arjoo. "Machine Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Pełny tekst źródłaSedej, Owen, Eric Mbonimpa, Trevor Sleight, and Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review." Journal of Energy and Power Technology 4, no. 3 (2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Pełny tekst źródłaMasamah, Ulfa, and Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design." Hipotenusa : Journal of Mathematical Society 3, no. 2 (2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Pełny tekst źródłaPazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian, and Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Pełny tekst źródłaGao, Kaifu, Dong Chen, Alfred J. Robison, and Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction." Journal of Physical Chemistry Letters 12, no. 45 (2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Pełny tekst źródłaBarmparis, G. D., and G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning." Journal of the Optical Society of America B 38, no. 9 (2021): C120. http://dx.doi.org/10.1364/josab.430206.
Pełny tekst źródłaPilania, G., K. J. McClellan, C. R. Stanek, and B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery." Journal of Chemical Physics 148, no. 24 (2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Pełny tekst źródłaKapoor, Taniya, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. "Physics-informed machine learning for moving load problems." Journal of Physics: Conference Series 2647, no. 15 (2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Pełny tekst źródłaBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya, and Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting." ECS Meeting Abstracts MA2024-01, no. 2 (2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Pełny tekst źródłaCele, Nomfundo, Alain Kibangou, and Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving." ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Pełny tekst źródłaBai, Tao, and Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning." Computers & Geosciences 146 (January 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Pełny tekst źródłaLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, et al. "Physics informed machine learning for wind speed prediction." Energy 268 (April 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Pełny tekst źródłaTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers, and Neil D. Sims. "Resource-efficient machining through physics-informed machine learning." Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Pełny tekst źródłaYang, Shaoze. "A Study of Heart Disease Diagnosis Using Machine Learning and Data Mining." Journal of Clinical Medicine Research 5, no. 4 (2024): 565. https://doi.org/10.32629/jcmr.v5i4.3135.
Pełny tekst źródłaOneto, Luca, and Davide Chicco. "Eight quick tips for biologically and medically informed machine learning." PLOS Computational Biology 21, no. 1 (2025): e1012711. https://doi.org/10.1371/journal.pcbi.1012711.
Pełny tekst źródłaLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee, and Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning." Journal of the Acoustical Society of America 152, no. 4 (2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Pełny tekst źródłaThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde, and Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Pełny tekst źródłaMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Pełny tekst źródłaChen, James Ming, Mira Zovko, Nika Šimurina, and Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution." International Journal of Environmental Research and Public Health 18, no. 16 (2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Pełny tekst źródłaO'Donncha, Fearghal, and Jon Grant. "Precision Aquaculture." IEEE Internet of Things Magazine 2, no. 4 (2020): 26–30. https://doi.org/10.1109/IOTM.0001.1900033.
Pełny tekst źródłaShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics." Global Research and Development Journals 8, no. 8 (2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Pełny tekst źródłaSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis, and Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, no. 1 (2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Pełny tekst źródłaLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability." AIP Advances 11, no. 2 (2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Pełny tekst źródłaMondal, B., T. Mukherjee, and T. DebRoy. "Crack free metal printing using physics informed machine learning." Acta Materialia 226 (March 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Pełny tekst źródłaHowland, Michael F., and John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning." Energies 12, no. 14 (2019): 2716. http://dx.doi.org/10.3390/en12142716.
Pełny tekst źródłavon Bloh, Malte, David Lobell, and Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction." Computers and Electronics in Agriculture 227 (December 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Pełny tekst źródłaLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, et al. "Machine learning informed tetragonal ratio c/a of martensite." Computational Materials Science 233 (January 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Pełny tekst źródłaOsorio, Julian D., Mario De Florio, Rob Hovsapian, Chrys Chryssostomidis, and George Em Karniadakis. "Physics-Informed machine learning for solar-thermal power systems." Energy Conversion and Management 327 (March 2025): 119542. https://doi.org/10.1016/j.enconman.2025.119542.
Pełny tekst źródłaTartakovsky, A. M., D. A. Barajas-Solano, and Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions." Journal of Computational Physics 426 (February 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Pełny tekst źródłaHsu, Abigail, Baolian Cheng, and Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning." Physics of Plasmas 27, no. 1 (2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Pełny tekst źródłaKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley, and Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae." Astrophysical Journal 940, no. 1 (2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Pełny tekst źródłaLang, Xiao, Da Wu, and Wengang Mao. "Physics-informed machine learning models for ship speed prediction." Expert Systems with Applications 238 (March 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Pełny tekst źródłaUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha, and Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques." Computers and Electrical Engineering 111 (October 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Pełny tekst źródłaPiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu, and Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning." IEEE Transactions on Artificial Intelligence 5, no. 3 (2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Pełny tekst źródłaKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Pełny tekst źródła