Artykuły w czasopismach na temat „Macrophage activation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Macrophage activation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sharma, Preeti, Shailza Shreshtha, Pradeep Kumar, Rachna Sharma, and T. K. Mahapatra. "A Review on Macrophage Activation Syndrome." Journal of Pure and Applied Microbiology 13, no. 1 (2019): 183–91. http://dx.doi.org/10.22207/jpam.13.1.19.
Pełny tekst źródłaGilbreath, M. J., C. A. Nacy, D. L. Hoover, C. R. Alving, G. M. Swartz, and M. S. Meltzer. "Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes." Journal of Immunology 134, no. 5 (1985): 3420–25. http://dx.doi.org/10.4049/jimmunol.134.5.3420.
Pełny tekst źródłaVan Epps, Heather L. "Macrophage activation unveiled." Journal of Experimental Medicine 202, no. 7 (2005): 884. http://dx.doi.org/10.1084/jem.2027fta.
Pełny tekst źródłaHeidenreich, S., M. Weyers, J. H. Gong, H. Sprenger, M. Nain, and D. Gemsa. "Potentiation of lymphokine-induced macrophage activation by tumor necrosis factor-alpha." Journal of Immunology 140, no. 5 (1988): 1511–18. http://dx.doi.org/10.4049/jimmunol.140.5.1511.
Pełny tekst źródłaZhao, Yu, Yuteng Jiang, Fengmei Wang, et al. "High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy." PLOS ONE 19, no. 12 (2024): e0314974. https://doi.org/10.1371/journal.pone.0314974.
Pełny tekst źródłaMcGee, MP, R. Wallin, FB Wheeler, and H. Rothberger. "Initiation of the extrinsic pathway of coagulation by human and rabbit alveolar macrophages: a kinetic study." Blood 74, no. 5 (1989): 1583–90. http://dx.doi.org/10.1182/blood.v74.5.1583.1583.
Pełny tekst źródłaMcGee, MP, R. Wallin, FB Wheeler, and H. Rothberger. "Initiation of the extrinsic pathway of coagulation by human and rabbit alveolar macrophages: a kinetic study." Blood 74, no. 5 (1989): 1583–90. http://dx.doi.org/10.1182/blood.v74.5.1583.bloodjournal7451583.
Pełny tekst źródłaLewis, Brandon W., Sonika Patial, and Yogesh Saini. "In Vitro Screening Method for Characterization of Macrophage Activation Responses." Methods and Protocols 5, no. 5 (2022): 68. http://dx.doi.org/10.3390/mps5050068.
Pełny tekst źródłaRios, Francisco J., Marianna M. Koga, Mateus Pecenin, Matheus Ferracini, Magnus Gidlund, and S. Jancar. "Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR." Mediators of Inflammation 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/198193.
Pełny tekst źródłaValledor, Annabel F., Luís Arpa, Ester Sánchez-Tilló та ін. "IFN-γ–mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation". Blood 112, № 8 (2008): 3274–82. http://dx.doi.org/10.1182/blood-2007-11-123604.
Pełny tekst źródłaDavis, Spring, Aiko M. Cirone, Janet Menzie, et al. "Phagocytosis-mediated M1 activation by chitin but not by chitosan." American Journal of Physiology-Cell Physiology 315, no. 1 (2018): C62—C72. http://dx.doi.org/10.1152/ajpcell.00268.2017.
Pełny tekst źródłaLeopold Wager, Chrissy M., Camaron R. Hole, Karen L. Wozniak, Michal A. Olszewski, Mathias Mueller, and Floyd L. Wormley. "STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans." Infection and Immunity 83, no. 12 (2015): 4513–27. http://dx.doi.org/10.1128/iai.00935-15.
Pełny tekst źródłaONOZAKI, Kikuo. "Macrophage activation by macrophage activation factor, macrophage migration inhibitory factor." Nippon Saikingaku Zasshi 40, no. 5 (1985): 811–17. http://dx.doi.org/10.3412/jsb.40.811.
Pełny tekst źródłaTimmer, Anjuli M., та Victor Nizet. "IKKβ/NF-κB and the miscreant macrophage". Journal of Experimental Medicine 205, № 6 (2008): 1255–59. http://dx.doi.org/10.1084/jem.20081056.
Pełny tekst źródłaHuang, Wei, Itsuko Ishii, Wei-Yang Zhang, Miyahiko Sonobe, and Howard S. Kruth. "PMA activation of macrophages alters macrophage metabolism of aggregated LDL." Journal of Lipid Research 43, no. 8 (2002): 1275–82. http://dx.doi.org/10.1194/jlr.m100436-jlr200.
Pełny tekst źródłaWyler, D. J., D. I. Beller, and J. P. Sypek. "Macrophage activation for antileishmanial defense by an apparently novel mechanism." Journal of Immunology 138, no. 4 (1987): 1246–49. http://dx.doi.org/10.4049/jimmunol.138.4.1246.
Pełny tekst źródłaStout, R. D., J. Suttles, J. Xu, I. S. Grewal, and R. A. Flavell. "Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice." Journal of Immunology 156, no. 1 (1996): 8–11. http://dx.doi.org/10.4049/jimmunol.156.1.8.
Pełny tekst źródłaYu, Tingting, Yong Zuo, Rong Cai та ін. "SENP1 regulates IFN-γ−STAT1 signaling through STAT3−SOCS3 negative feedback loop". Journal of Molecular Cell Biology 9, № 2 (2016): 144–53. http://dx.doi.org/10.1093/jmcb/mjw042.
Pełny tekst źródłaZhang, Ronghua, Tienan Wang, and Qing Lin. "847 Inflammasome activation in M2 macrophage restrain the immune suppressive function." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A900. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0847.
Pełny tekst źródłaOppong-Nonterah, Gertrude O., Omar Lakhdari, Asami Yamamura, Hal M. Hoffman, and Lawrence S. Prince. "TLR Activation Alters Bone Marrow-Derived Macrophage Differentiation." Journal of Innate Immunity 11, no. 1 (2018): 99–108. http://dx.doi.org/10.1159/000494070.
Pełny tekst źródłaHardbower, Dana M., Mohammad Asim, Paula B. Luis, et al. "Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications." Proceedings of the National Academy of Sciences 114, no. 5 (2017): E751—E760. http://dx.doi.org/10.1073/pnas.1614958114.
Pełny tekst źródłaSerraj Andaloussi, Meriem, Hayat Midyani, Chadia Khalloufi, et al. "Macrophage Activation Syndrome Discovered During Pregnancy: Case Report." Obstetrics Gynecology and Reproductive Sciences 5, no. 7 (2021): 01–04. http://dx.doi.org/10.31579/2578-8965/081.
Pełny tekst źródłaSeljelid, R. "Macrophage Activation." Scandinavian Journal of Rheumatology 17, sup76 (1988): 67–72. http://dx.doi.org/10.3109/03009748809102954.
Pełny tekst źródłaPetit, J. F., and G. Lemaire. "Macrophage activation." Annales de l'Institut Pasteur / Immunologie 137 (January 1986): 191–92. http://dx.doi.org/10.1016/s0771-050x(86)80024-9.
Pełny tekst źródłaPinder, M. "Macrophage activation." Veterinary Immunology and Immunopathology 14, no. 2 (1987): 205–6. http://dx.doi.org/10.1016/0165-2427(87)90055-9.
Pełny tekst źródłaPedicillo, Maria Carmela, Ilenia Sara De Stefano, Rosanna Zamparese, et al. "The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3." International Journal of Molecular Sciences 24, no. 17 (2023): 13259. http://dx.doi.org/10.3390/ijms241713259.
Pełny tekst źródłaChen, L., Y. Suzuki, and E. F. Wheelock. "Interferon-gamma synergizes with tumor necrosis factor and with interleukin 1 and requires the presence of both monokines to induce antitumor cytotoxic activity in macrophages." Journal of Immunology 139, no. 12 (1987): 4096–101. http://dx.doi.org/10.4049/jimmunol.139.12.4096.
Pełny tekst źródłaMantuano, Elisabetta, Pardis Azmoon, Coralie Brifault, et al. "Tissue-type plasminogen activator regulates macrophage activation and innate immunity." Blood 130, no. 11 (2017): 1364–74. http://dx.doi.org/10.1182/blood-2017-04-780205.
Pełny tekst źródłaLiang, Yan, Xiaoli Sun, Mingjie Wang та ін. "PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production". Cell Death & Differentiation 28, № 9 (2021): 2728–44. http://dx.doi.org/10.1038/s41418-021-00780-5.
Pełny tekst źródłaYamamoto, N., VR Naraparaju, and PJ Orchard. "Defective lymphocyte glycosidases in the macrophage activation cascade of juvenile osteopetrosis." Blood 88, no. 4 (1996): 1473–78. http://dx.doi.org/10.1182/blood.v88.4.1473.bloodjournal8841473.
Pełny tekst źródłaVieira, Pedro, Angela Castoldi, Pratik Aryal, et al. "CTLA4-Ig treatment improves RBP4-induced adipose tissue inflammation and insulin resistance triggered by MyD88, JNK, ERK and p38 pathways (IRC8P.443)." Journal of Immunology 194, no. 1_Supplement (2015): 129.7. http://dx.doi.org/10.4049/jimmunol.194.supp.129.7.
Pełny tekst źródłaJAWOROWSKI, Anthony, Elizabeth CHRISTY, Permeen YUSOFF, Robert BYRNE, and John A. HAMILTON. "Differences in the kinetics of activation of protein kinases and extracellular signal-related protein kinase 1 in colony-stimulating factor 1-stimulated and lipopolysaccharide-stimulated macrophages." Biochemical Journal 320, no. 3 (1996): 1011–16. http://dx.doi.org/10.1042/bj3201011.
Pełny tekst źródłaBian, Zhen, Lei Shi та Yuan Liu. "Phagocytic plasticity of macrophage towards healthy self cells: inflammatory activation elicit self-attacking phenotype in macrophages lacking SIRPα-CD47 restraint". Journal of Immunology 198, № 1_Supplement (2017): 154.7. http://dx.doi.org/10.4049/jimmunol.198.supp.154.7.
Pełny tekst źródłaEsparza, I., D. Mannel, A. Ruppel, W. Falk та PH Krammer. "Interferon γ and lymphotoxin or tumor necrosis factor act synergistically to induce macrophage killing of tumor cells and schistosomula of schistosoma mansoni". Journal of Experimental Medicine 166, № 2 (1987): 589–94. http://dx.doi.org/10.1084/jem.166.2.589.
Pełny tekst źródłaLlauradó Maury, Gabriel, Humberto J. Morris-Quevedo, Annick Heykers, et al. "Differential Induction Pattern Towards Classically Activated Macrophages in Response to an Immunomodulatory Extract from Pleurotus ostreatus Mycelium." Journal of Fungi 7, no. 3 (2021): 206. http://dx.doi.org/10.3390/jof7030206.
Pełny tekst źródłaLeu, R. W., A. Q. Zhou, B. J. Shannon, and M. J. Herriott. "Inhibitors of C1q biosynthesis suppress activation of murine macrophages for both antibody-independent and antibody-dependent tumor cytotoxicity." Journal of Immunology 144, no. 6 (1990): 2281–86. http://dx.doi.org/10.4049/jimmunol.144.6.2281.
Pełny tekst źródłaZhao, Yong, Hao Wang, Ming Lu, et al. "Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation." Mediators of Inflammation 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/6340457.
Pełny tekst źródłaTekin, Cansu, Hella L. Aberson, Cynthia Waasdorp, et al. "Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation." Cellular Oncology 43, no. 6 (2020): 1161–74. http://dx.doi.org/10.1007/s13402-020-00549-x.
Pełny tekst źródłaNedvetzki, Shlomo, Stefanie Sowinski, Robert A. Eagle, et al. "Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses." Blood 109, no. 9 (2007): 3776–85. http://dx.doi.org/10.1182/blood-2006-10-052977.
Pełny tekst źródłaManiecki, Maciej Bogdan, Mette Munk Lauridsen, Troels Bygum Knudsen, et al. "A Macrophage Activation Switch (MAcS)-Index for Assessment of Monocyte/Macrophage Activation." Blood 112, no. 11 (2008): 3550. http://dx.doi.org/10.1182/blood.v112.11.3550.3550.
Pełny tekst źródłaRoa-Vidal, Natalia, Adriana S. Rodríguez-Aponte, José A. Lasalde-Dominicci, Coral M. Capó-Vélez, and Manuel Delgado-Vélez. "Cholinergic Polarization of Human Macrophages." International Journal of Molecular Sciences 24, no. 21 (2023): 15732. http://dx.doi.org/10.3390/ijms242115732.
Pełny tekst źródłaYamamoto, N., D. D. Lindsay, V. R. Naraparaju, R. A. Ireland, and S. N. Popoff. "A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats." Journal of Immunology 152, no. 10 (1994): 5100–5107. http://dx.doi.org/10.4049/jimmunol.152.10.5100.
Pełny tekst źródłaTAVARES, ALDO, and ANAMELIA BOCCA. "Dectin-1 restores macrophage anti-Cryptococcus neoformans activity." Journal of Immunology 196, no. 1_Supplement (2016): 60.21. http://dx.doi.org/10.4049/jimmunol.196.supp.60.21.
Pełny tekst źródłaYamamoto, N., S. Homma, and I. Millman. "Identification of the serum factor required for in vitro activation of macrophages. Role of vitamin D3-binding protein (group specific component, Gc) in lysophospholipid activation of mouse peritoneal macrophages." Journal of Immunology 147, no. 1 (1991): 273–80. http://dx.doi.org/10.4049/jimmunol.147.1.273.
Pełny tekst źródłaTang, Hong, JIn Feng, and Chao Zhang. "The innate-like T cells are required to modulate acute inflammatory response (P1050)." Journal of Immunology 190, no. 1_Supplement (2013): 65.26. http://dx.doi.org/10.4049/jimmunol.190.supp.65.26.
Pełny tekst źródłaStunault, Marion I., Gaël Bories, Rodolphe R. Guinamard, and Stoyan Ivanov. "Metabolism Plays a Key Role during Macrophage Activation." Mediators of Inflammation 2018 (December 10, 2018): 1–10. http://dx.doi.org/10.1155/2018/2426138.
Pełny tekst źródłaMaataoui-Belabbes, Hajar, Hanaa Bencharef, Bouchra Oukkache, Abdellah Madani, and Mouna Lamchahab. "Macrophage activation syndrome revealing Hodgkin lymphoma." Annales Africaines de Medecine 17, no. 3 (2024): e5728-e5733. http://dx.doi.org/10.4314/aamed.v17i3.15.
Pełny tekst źródłaJha, Aakanksha, and Erika Moore. "Collagen-derived peptide, DGEA, inhibits pro-inflammatory macrophages in biofunctional hydrogels." Journal of Materials Research 37, no. 1 (2021): 77–87. http://dx.doi.org/10.1557/s43578-021-00423-y.
Pełny tekst źródłaMurray, H. W., G. L. Spitalny, and C. F. Nathan. "Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma." Journal of Immunology 134, no. 3 (1985): 1619–22. http://dx.doi.org/10.4049/jimmunol.134.3.1619.
Pełny tekst źródłaLodyga, Monika, Elizabeth Cambridge, Henna M. Karvonen та ін. "Cadherin-11–mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β". Science Signaling 12, № 564 (2019): eaao3469. http://dx.doi.org/10.1126/scisignal.aao3469.
Pełny tekst źródła