Artykuły w czasopismach na temat „Macrophage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Macrophage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rodriguez, Eric, Frederic Boudard, Michele Mallié, Jean-Marie Bastide, and Madeleine Bastide. "Murine macrophage elastolytic activity induced by Aspergillus fumigatus strains in vitro: evidence of the expression of two macrophage-induced protease genes." Canadian Journal of Microbiology 43, no. 7 (1997): 649–57. http://dx.doi.org/10.1139/m97-092.
Pełny tekst źródłaStojadinović, Marija. "Macrophage polarization and infectious diseases." Biologia Serbica 45, no. 2 (2023): 38–43. https://doi.org/10.5281/zenodo.10402369.
Pełny tekst źródłaLiu, Shuangqing, Huilei Zhang, Yanan Li та ін. "S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation". Journal for ImmunoTherapy of Cancer 9, № 6 (2021): e002548. http://dx.doi.org/10.1136/jitc-2021-002548.
Pełny tekst źródłaWilson, Justin E., Bhuvana Katkere, and James R. Drake. "Francisella tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages." Infection and Immunity 77, no. 11 (2009): 4953–65. http://dx.doi.org/10.1128/iai.00844-09.
Pełny tekst źródłaPedicillo, Maria Carmela, Ilenia Sara De Stefano, Rosanna Zamparese, et al. "The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3." International Journal of Molecular Sciences 24, no. 17 (2023): 13259. http://dx.doi.org/10.3390/ijms241713259.
Pełny tekst źródłaCareau, Éric, Léa-Isabelle Proulx, Philippe Pouliot, Annie Spahr, Véronique Turmel, and Élyse Y. Bissonnette. "Antigen sensitization modulates alveolar macrophage functions in an asthma model." American Journal of Physiology-Lung Cellular and Molecular Physiology 290, no. 5 (2006): L871—L879. http://dx.doi.org/10.1152/ajplung.00219.2005.
Pełny tekst źródłaXu, Jiawei, Lanya Fu, Junyao Deng, et al. "miR-301a Deficiency Attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 Pathway." Cells 11, no. 24 (2022): 3952. http://dx.doi.org/10.3390/cells11243952.
Pełny tekst źródłaMcKenzie, C. G. J., U. Koser, L. E. Lewis, et al. "Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages." Infection and Immunity 78, no. 4 (2010): 1650–58. http://dx.doi.org/10.1128/iai.00001-10.
Pełny tekst źródłaFahey, T. J., K. J. Tracey, P. Tekamp-Olson, et al. "Macrophage inflammatory protein 1 modulates macrophage function." Journal of Immunology 148, no. 9 (1992): 2764–69. http://dx.doi.org/10.4049/jimmunol.148.9.2764.
Pełny tekst źródłaDende, Chaitanya, Mihir Pendse, Daniel Propheter, Gabriella Quinn, and Lora V. Hooper. "Vitamin A regulates phagocytosis by resident macrophages of the small intestine." Journal of Immunology 208, no. 1_Supplement (2022): 113.23. http://dx.doi.org/10.4049/jimmunol.208.supp.113.23.
Pełny tekst źródłaTorre, Donato, Luisa Gennero, F. M. Baccino, Filippo Speranza, Gilberto Biondi, and Agostino Pugliese. "Impaired Macrophage Phagocytosis of Apoptotic Neutrophils in Patients with Human Immunodeficiency Virus Type 1 Infection." Clinical and Vaccine Immunology 9, no. 5 (2002): 983–86. http://dx.doi.org/10.1128/cdli.9.5.983-986.2002.
Pełny tekst źródłaVuarchey, Clément, Sushil Kumar, and Reto Schwendener. "Albumin coated liposomes: a novel platform for macrophage specific drug delivery." Nanotechnology Development 1, no. 1 (2011): 2. http://dx.doi.org/10.4081/nd.2011.e2.
Pełny tekst źródłaDoherty, T. M., R. Kastelein, S. Menon, S. Andrade, and R. L. Coffman. "Modulation of murine macrophage function by IL-13." Journal of Immunology 151, no. 12 (1993): 7151–60. http://dx.doi.org/10.4049/jimmunol.151.12.7151.
Pełny tekst źródłaCotechini, Tiziana, Aline Atallah, and Arielle Grossman. "Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy." Cells 10, no. 4 (2021): 960. http://dx.doi.org/10.3390/cells10040960.
Pełny tekst źródłaTaylor, Sarah A., Shang-Yang Chen, Gaurav Gadhvi, et al. "Transcriptional profiling of pediatric cholestatic livers identifies three distinct macrophage populations." PLOS ONE 16, no. 1 (2021): e0244743. http://dx.doi.org/10.1371/journal.pone.0244743.
Pełny tekst źródłaAziz, Athar, Laurent Vanhille, Peer Mohideen, et al. "Development of Macrophages with Altered Actin Organization in the Absence of MafB." Molecular and Cellular Biology 26, no. 18 (2006): 6808–18. http://dx.doi.org/10.1128/mcb.00245-06.
Pełny tekst źródłaSong, Lili, Do-sung Kim, Wenyu Gou, et al. "GRP94 regulates M1 macrophage polarization and insulin resistance." American Journal of Physiology-Endocrinology and Metabolism 318, no. 6 (2020): E1004—E1013. http://dx.doi.org/10.1152/ajpendo.00542.2019.
Pełny tekst źródłaPagan, Antonio, Chao-Tsung Yang, Laura Swaim, and Lalita Ramakrishnan. "Replenishment of granuloma macrophages promotes mycobacterial resistance by preventing extracellular bacterial growth (INC7P.410)." Journal of Immunology 192, no. 1_Supplement (2014): 186.11. http://dx.doi.org/10.4049/jimmunol.192.supp.186.11.
Pełny tekst źródłaCho, Sun Wook, Young A. Kim, Hyun Jin Sun, et al. "CXCL16 signaling mediated macrophage effects on tumor invasion of papillary thyroid carcinoma." Endocrine-Related Cancer 23, no. 2 (2015): 113–24. http://dx.doi.org/10.1530/erc-15-0196.
Pełny tekst źródłaTekin, Cansu, Hella L. Aberson, Cynthia Waasdorp, et al. "Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation." Cellular Oncology 43, no. 6 (2020): 1161–74. http://dx.doi.org/10.1007/s13402-020-00549-x.
Pełny tekst źródłaLee, Hanui, Seong Hee Kang, Gyeong Han Jeong, et al. "Gamma irradiation-engineered macrophage-derived exosomes as potential immunomodulatory therapeutic agents." PLOS ONE 19, no. 6 (2024): e0303434. http://dx.doi.org/10.1371/journal.pone.0303434.
Pełny tekst źródłaDeng, Lishuang, Zhijie Jian, Tong Xu, et al. "Macrophage Polarization: An Important Candidate Regulator for Lung Diseases." Molecules 28, no. 5 (2023): 2379. http://dx.doi.org/10.3390/molecules28052379.
Pełny tekst źródłaShaw, Maureen A., Zhen Gao, and Eric S. Mullins. "Plasmin(ogen) Mediates Macrophage Migration in a Fibrin(ogen) Dependent Mechanism." Blood 128, no. 22 (2016): 18. http://dx.doi.org/10.1182/blood.v128.22.18.18.
Pełny tekst źródłaXie, Linglin, M. Teresa Ortega, Silvia Mora, and Stephen K. Chapes. "Interactive Changes between Macrophages and Adipocytes." Clinical and Vaccine Immunology 17, no. 4 (2010): 651–59. http://dx.doi.org/10.1128/cvi.00494-09.
Pełny tekst źródłaLu, Chunxia, P. Anil Kumar, Yong Fan, Mark A. Sperling, and Ram K. Menon. "A Novel Effect of Growth Hormone on Macrophage Modulates Macrophage-Dependent Adipocyte Differentiation." Endocrinology 151, no. 5 (2010): 2189–99. http://dx.doi.org/10.1210/en.2009-1194.
Pełny tekst źródłaMouton, Alan J., Xuan Li, Michael E. Hall, and John E. Hall. "Obesity, Hypertension, and Cardiac Dysfunction." Circulation Research 126, no. 6 (2020): 789–806. http://dx.doi.org/10.1161/circresaha.119.312321.
Pełny tekst źródłaSnarski, Patricia, Sergiy Sukhanov, Tadashi Yoshida, et al. "Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice." Arteriosclerosis, Thrombosis, and Vascular Biology 42, no. 2 (2022): 113–26. http://dx.doi.org/10.1161/atvbaha.121.316090.
Pełny tekst źródłaRandolph, Gwendalyn J. "Monocyte Trafficking, Inflammation, and Atherosclerosis." Blood 122, no. 21 (2013): SCI—53—SCI—53. http://dx.doi.org/10.1182/blood.v122.21.sci-53.sci-53.
Pełny tekst źródłaGarcía-Rodas, Rocío, Fernando González-Camacho, Juan Luis Rodríguez-Tudela, Manuel Cuenca-Estrella, and Oscar Zaragoza. "The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing." Infection and Immunity 79, no. 6 (2011): 2136–44. http://dx.doi.org/10.1128/iai.00044-11.
Pełny tekst źródłaRosa, L. F. B. P. Costa, Y. Cury, and R. Curi. "Hormonal control of macrophage function and glutamine metabolism." Biochemistry and Cell Biology 69, no. 4 (1991): 309–12. http://dx.doi.org/10.1139/o91-047.
Pełny tekst źródłaPervin, Munmun, Mohammad Rabiul Karim, Mizuki Kuramochi, Takeshi Izawa, Mitsuru Kuwamura, and Jyoji Yamate. "Macrophage Populations and Expression of Regulatory Inflammatory Factors in Hepatic Macrophage-depleted Rat Livers under Lipopolysaccharide (LPS) Treatment." Toxicologic Pathology 46, no. 5 (2018): 540–52. http://dx.doi.org/10.1177/0192623318776898.
Pełny tekst źródłaGilbreath, M. J., C. A. Nacy, D. L. Hoover, C. R. Alving, G. M. Swartz, and M. S. Meltzer. "Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes." Journal of Immunology 134, no. 5 (1985): 3420–25. http://dx.doi.org/10.4049/jimmunol.134.5.3420.
Pełny tekst źródłaLi, Xue, Deana Mikhalkova, Erhe Gao, et al. "Myocardial injury after ischemia-reperfusion in mice deficient in Akt2 is associated with increased cardiac macrophage density." American Journal of Physiology-Heart and Circulatory Physiology 301, no. 5 (2011): H1932—H1940. http://dx.doi.org/10.1152/ajpheart.00755.2010.
Pełny tekst źródłaBoutilier, Ava J., and Sherine F. Elsawa. "Macrophage Polarization States in the Tumor Microenvironment." International Journal of Molecular Sciences 22, no. 13 (2021): 6995. http://dx.doi.org/10.3390/ijms22136995.
Pełny tekst źródłaKim, Bo-Young, Ji Hyeon Ryu, Jisu Park, et al. "Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype." Nutrients 15, no. 12 (2023): 2750. http://dx.doi.org/10.3390/nu15122750.
Pełny tekst źródłaHamrick, Terri S., Edward A. Havell, John R. Horton, and Paul E. Orndorff. "Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized UnopsonizedEscherichia coli." Infection and Immunity 68, no. 1 (2000): 125–32. http://dx.doi.org/10.1128/iai.68.1.125-132.2000.
Pełny tekst źródłaSong, Lige, Garyfallia Papaioannou, Hengguang Zhao, et al. "The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury." Endocrinology 157, no. 10 (2016): 4066–75. http://dx.doi.org/10.1210/en.2016-1474.
Pełny tekst źródłaChen, Peiwen, Hao Zuo, Hu Xiong, et al. "Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis." Proceedings of the National Academy of Sciences 114, no. 3 (2017): 580–85. http://dx.doi.org/10.1073/pnas.1614035114.
Pełny tekst źródłaLi, Yingqiu, xiao yu, and Anlong Xu. "The p38-interacting protein negatively regulates monocyte/macrophage differentiation (HEM5P.239)." Journal of Immunology 194, no. 1_Supplement (2015): 120.19. http://dx.doi.org/10.4049/jimmunol.194.supp.120.19.
Pełny tekst źródłaMartins, Flávia, Rosa Oliveira, Bruno Cavadas, et al. "Hypoxia and Macrophages Act in Concert Towards a Beneficial Outcome in Colon Cancer." Cancers 12, no. 4 (2020): 818. http://dx.doi.org/10.3390/cancers12040818.
Pełny tekst źródłaHardbower, Dana M., Mohammad Asim, Paula B. Luis, et al. "Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications." Proceedings of the National Academy of Sciences 114, no. 5 (2017): E751—E760. http://dx.doi.org/10.1073/pnas.1614958114.
Pełny tekst źródłaLuo, Qianting, Xingyang Li, Wenchao Zhong, et al. "Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs." Regenerative Biomaterials, December 13, 2021. http://dx.doi.org/10.1093/rb/rbab075.
Pełny tekst źródłaMuhammad, Sajjad, Shafqat Rasul Chaudhry, Gergana Dobreva, Michael T. Lawton, Mika Niemelä, and Daniel Hänggi. "Vascular Macrophages as Therapeutic Targets to Treat Intracranial Aneurysms." Frontiers in Immunology 12 (March 8, 2021). http://dx.doi.org/10.3389/fimmu.2021.630381.
Pełny tekst źródłaBo, Haotian, Ulrich Aymard Ekomi Moure, Yuanmiao Yang, et al. "Mycobacterium tuberculosis-macrophage interaction: Molecular updates." Frontiers in Cellular and Infection Microbiology 13 (March 3, 2023). http://dx.doi.org/10.3389/fcimb.2023.1062963.
Pełny tekst źródłaTatano, Yutaka, Toshiaki Shimizu, Chiaki Sano, and Haruaki Tomioka. "Roles of autophagy in killing of mycobacterial pathogens by host macrophages – Effects of some medicinal plants." European Journal of Microbiology and Immunology, February 13, 2024. http://dx.doi.org/10.1556/1886.2023.00062.
Pełny tekst źródłaXiao, Qiuqun, Jinyan Huang, Xing Wang, et al. "Supramolecular Peptide Amphiphile Nanospheres Reprogram Tumor‐associated Macrophage to Reshape the Immune Microenvironment for Enhanced Breast Cancer Immunotherapy." Small, December 15, 2023. http://dx.doi.org/10.1002/smll.202307390.
Pełny tekst źródłaZhang, Lai, Huian Han, Andi Xu, et al. "Lysozyme 1 Inflamed CCR2 + Macrophages Promote Obesity-Induced Cardiac Dysfunction." Circulation Research, July 26, 2024. http://dx.doi.org/10.1161/circresaha.124.324106.
Pełny tekst źródłaLuque-Campos, Noymar, Felipe A. Bustamante-Barrientos, Carolina Pradenas, et al. "The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming." Frontiers in Immunology 12 (June 4, 2021). http://dx.doi.org/10.3389/fimmu.2021.624746.
Pełny tekst źródłaUmezu, Ryuta, Jun-ichiro Koga, Tetsuya Matoba, et al. "Macrophage (Drp1) Dynamin-Related Protein 1 Accelerates Intimal Thickening After Vascular Injury." Arteriosclerosis, Thrombosis, and Vascular Biology 40, no. 7 (2020). http://dx.doi.org/10.1161/atvbaha.120.314383.
Pełny tekst źródłaOrsi, Micaela, Mihaly Palmai-Pallag, Yousof Yakoub, et al. "Monocytic Ontogeny of Regenerated Macrophages Characterizes the Mesotheliomagenic Responses to Carbon Nanotubes." Frontiers in Immunology 12 (June 14, 2021). http://dx.doi.org/10.3389/fimmu.2021.666107.
Pełny tekst źródła