Artykuły w czasopismach na temat „Macrophages”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Macrophages”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rodriguez, Eric, Frederic Boudard, Michele Mallié, Jean-Marie Bastide i Madeleine Bastide. "Murine macrophage elastolytic activity induced by Aspergillus fumigatus strains in vitro: evidence of the expression of two macrophage-induced protease genes". Canadian Journal of Microbiology 43, nr 7 (1.07.1997): 649–57. http://dx.doi.org/10.1139/m97-092.
Pełny tekst źródłaLu, Yufei, Leiming Guo i Gaofeng Ding. "PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma". Future Oncology 15, nr 35 (grudzień 2019): 4019–30. http://dx.doi.org/10.2217/fon-2019-0519.
Pełny tekst źródłaHargarten, Jessica C., Tyler C. Moore, Thomas M. Petro, Kenneth W. Nickerson i Audrey L. Atkin. "Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration". Infection and Immunity 83, nr 10 (20.07.2015): 3857–64. http://dx.doi.org/10.1128/iai.00886-15.
Pełny tekst źródłaYadav, Mahesh, i Jeffrey S. Schorey. "The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria". Blood 108, nr 9 (1.11.2006): 3168–75. http://dx.doi.org/10.1182/blood-2006-05-024406.
Pełny tekst źródłaGallego, Carolina, Douglas Golenbock, Maria Adelaida Gomez i Nancy Gore Saravia. "Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis". Infection and Immunity 79, nr 7 (25.04.2011): 2871–79. http://dx.doi.org/10.1128/iai.01388-10.
Pełny tekst źródłaMcKenzie, C. G. J., U. Koser, L. E. Lewis, J. M. Bain, H. M. Mora-Montes, R. N. Barker, N. A. R. Gow i L. P. Erwig. "Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages". Infection and Immunity 78, nr 4 (1.02.2010): 1650–58. http://dx.doi.org/10.1128/iai.00001-10.
Pełny tekst źródłaWilson, Justin E., Bhuvana Katkere i James R. Drake. "Francisella tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages". Infection and Immunity 77, nr 11 (24.08.2009): 4953–65. http://dx.doi.org/10.1128/iai.00844-09.
Pełny tekst źródłaCareau, Éric, Léa-Isabelle Proulx, Philippe Pouliot, Annie Spahr, Véronique Turmel i Élyse Y. Bissonnette. "Antigen sensitization modulates alveolar macrophage functions in an asthma model". American Journal of Physiology-Lung Cellular and Molecular Physiology 290, nr 5 (maj 2006): L871—L879. http://dx.doi.org/10.1152/ajplung.00219.2005.
Pełny tekst źródłaShinonaga, Masamichi, Cha Cheng Chang, Noriyuki Suzuki, Masazumi Sato i Takeo Kuwabara. "Immunohistological evaluation of macrophage infiltrates in brain tumors". Journal of Neurosurgery 68, nr 2 (luty 1988): 259–65. http://dx.doi.org/10.3171/jns.1988.68.2.0259.
Pełny tekst źródłaFedorov, A. A., N. A. Ermak, T. S. Gerashchenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov i M. N. Stakheyeva. "Polarization of macrophages: mechanisms, markers and factors of induction". Siberian journal of oncology 21, nr 4 (3.09.2022): 124–36. http://dx.doi.org/10.21294/1814-4861-2022-21-4-124-136.
Pełny tekst źródłaXu, Jiawei, Lanya Fu, Junyao Deng, Jiaqi Zhang, Ying Zou, Liqiang Liao, Xinrui Ma i in. "miR-301a Deficiency Attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 Pathway". Cells 11, nr 24 (7.12.2022): 3952. http://dx.doi.org/10.3390/cells11243952.
Pełny tekst źródłaBonetti, Justine, Alessandro Corti, Lucie Lerouge, Alfonso Pompella i Caroline Gaucher. "Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis—Nitro-Redox Interconnections". Antioxidants 10, nr 4 (26.03.2021): 516. http://dx.doi.org/10.3390/antiox10040516.
Pełny tekst źródłaDiNapoli, Sarah R., Vanessa M. Hirsch i Jason M. Brenchley. "Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections". Journal of Virology 90, nr 17 (15.06.2016): 7596–606. http://dx.doi.org/10.1128/jvi.00672-16.
Pełny tekst źródłaGarcía-Rodas, Rocío, Fernando González-Camacho, Juan Luis Rodríguez-Tudela, Manuel Cuenca-Estrella i Oscar Zaragoza. "The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing". Infection and Immunity 79, nr 6 (21.03.2011): 2136–44. http://dx.doi.org/10.1128/iai.00044-11.
Pełny tekst źródłaTaylor, Sarah A., Shang-Yang Chen, Gaurav Gadhvi, Liang Feng, Kyle D. Gromer, Hiam Abdala-Valencia, Kiwon Nam i in. "Transcriptional profiling of pediatric cholestatic livers identifies three distinct macrophage populations". PLOS ONE 16, nr 1 (7.01.2021): e0244743. http://dx.doi.org/10.1371/journal.pone.0244743.
Pełny tekst źródłaUlndreaj, Antigona, Angela Li, Yonghong Chen, Rickvinder Besla, Shaun Pacheco, Marwan G. Althagafi, Myron I. Cybulsky, Thomas Lindsay, Clinton S. Robbins i John S. Byrne. "Adventitial recruitment of Lyve-1− macrophages drives aortic aneurysm in an angiotensin-2-based murine model". Clinical Science 135, nr 10 (maj 2021): 1295–309. http://dx.doi.org/10.1042/cs20200963.
Pełny tekst źródłaDeng, Lishuang, Zhijie Jian, Tong Xu, Fengqin Li, Huidan Deng, Yuancheng Zhou, Siyuan Lai, Zhiwen Xu i Ling Zhu. "Macrophage Polarization: An Important Candidate Regulator for Lung Diseases". Molecules 28, nr 5 (4.03.2023): 2379. http://dx.doi.org/10.3390/molecules28052379.
Pełny tekst źródłaYaparla, Amulya, Milan Popovic, Kelsey A. Hauser, Louise A. Rollins-Smith i Leon Grayfer. "Amphibian (Xenopus laevis) Macrophage Subsets Vary in Their Responses to the Chytrid Fungus Batrachochytrium dendrobatidis". Journal of Fungi 11, nr 4 (15.04.2025): 311. https://doi.org/10.3390/jof11040311.
Pełny tekst źródłaAlQasrawi, Dania, i Saleh A. Naser. "Nicotine Modulates MyD88-Dependent Signaling Pathway in Macrophages during Mycobacterial Infection". Microorganisms 8, nr 11 (17.11.2020): 1804. http://dx.doi.org/10.3390/microorganisms8111804.
Pełny tekst źródłaRandolph, Gwendalyn J. "Monocyte Trafficking, Inflammation, and Atherosclerosis". Blood 122, nr 21 (15.11.2013): SCI—53—SCI—53. http://dx.doi.org/10.1182/blood.v122.21.sci-53.sci-53.
Pełny tekst źródłaLi, Wei, Yaomei Wang, Huizhi Zhao, Huan Zhang, Yuanlin Xu, Shihui Wang, Xinhua Guo i in. "Identification, Isolation and Transcriptome Analyses of Mouse, Rat and Man Erythroblastic Island Central Macrophages". Blood 132, Supplement 1 (29.11.2018): 841. http://dx.doi.org/10.1182/blood-2018-99-114188.
Pełny tekst źródłaWang, Jianjun, Yongliang Yao, Jing Xiong, Jianhong Wu, Xin Tang i Guangxin Li. "Evaluation of the Inflammatory Response in Macrophages Stimulated with Exosomes Secreted byMycobacterium avium-Infected Macrophages". BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/658421.
Pełny tekst źródłaFischer, Carrie D., Jennifer K. Beatty, Stephanie C. Duquette, Douglas W. Morck, Merlyn J. Lucas i André G. Buret. "Direct and Indirect Anti-Inflammatory Effects of Tulathromycin in Bovine Macrophages: Inhibition of CXCL-8 Secretion, Induction of Apoptosis, and Promotion of Efferocytosis". Antimicrobial Agents and Chemotherapy 57, nr 3 (7.01.2013): 1385–93. http://dx.doi.org/10.1128/aac.01598-12.
Pełny tekst źródłaLu, Chunxia, P. Anil Kumar, Yong Fan, Mark A. Sperling i Ram K. Menon. "A Novel Effect of Growth Hormone on Macrophage Modulates Macrophage-Dependent Adipocyte Differentiation". Endocrinology 151, nr 5 (25.02.2010): 2189–99. http://dx.doi.org/10.1210/en.2009-1194.
Pełny tekst źródłaCotechini, Tiziana, Aline Atallah i Arielle Grossman. "Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy". Cells 10, nr 4 (20.04.2021): 960. http://dx.doi.org/10.3390/cells10040960.
Pełny tekst źródłaGREGORY, D. J., i M. OLIVIER. "Subversion of host cell signalling by the protozoan parasiteLeishmania". Parasitology 130, S1 (marzec 2005): S27—S35. http://dx.doi.org/10.1017/s0031182005008139.
Pełny tekst źródłaGautier, Emmanuel L., Stoyan Ivanov, Jesse W. Williams, Stanley Ching-Cheng Huang, Genevieve Marcelin, Keke Fairfax, Peter L. Wang i in. "Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival". Journal of Experimental Medicine 211, nr 8 (14.07.2014): 1525–31. http://dx.doi.org/10.1084/jem.20140570.
Pełny tekst źródłaDende, Chaitanya, Mihir Pendse, Daniel Propheter, Gabriella Quinn i Lora V. Hooper. "Vitamin A regulates phagocytosis by resident macrophages of the small intestine". Journal of Immunology 208, nr 1_Supplement (1.05.2022): 113.23. http://dx.doi.org/10.4049/jimmunol.208.supp.113.23.
Pełny tekst źródłaSingh, Gyanesh, U. C. Pachouri, Chirag Chopra, Preeti Bajaj i Pushplata Singh. "Macrophage Gene Therapy: opening novel therapeutic avenues for immune disorders". F1000Research 4 (6.08.2015): 495. http://dx.doi.org/10.12688/f1000research.6817.1.
Pełny tekst źródłaXie, Linglin, M. Teresa Ortega, Silvia Mora i Stephen K. Chapes. "Interactive Changes between Macrophages and Adipocytes". Clinical and Vaccine Immunology 17, nr 4 (17.02.2010): 651–59. http://dx.doi.org/10.1128/cvi.00494-09.
Pełny tekst źródłaKnuth, Anne-Kathrin, Arnaud Huard, Zumer Naeem, Peter Rappl, Rebekka Bauer, Ana Carolina Mota, Tobias Schmid i in. "Apoptotic Cells induce Proliferation of Peritoneal Macrophages". International Journal of Molecular Sciences 22, nr 5 (24.02.2021): 2230. http://dx.doi.org/10.3390/ijms22052230.
Pełny tekst źródłaMisharin, Alexander V., Luisa Morales-Nebreda, Paul A. Reyfman, Carla M. Cuda, James M. Walter, Alexandra C. McQuattie-Pimentel, Ching-I. Chen i in. "Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span". Journal of Experimental Medicine 214, nr 8 (10.07.2017): 2387–404. http://dx.doi.org/10.1084/jem.20162152.
Pełny tekst źródłaPeng, Yuan, Mengxian Zhou, Hong Yang, Ruyi Qu, Yan Qiu, Jiawen Hao, Hongsheng Bi i Dadong Guo. "Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases". Mediators of Inflammation 2023 (8.06.2023): 1–20. http://dx.doi.org/10.1155/2023/8821610.
Pełny tekst źródłaXu, Rong, Hong-Fan Sun, David W. Williams, Adam V. Jones, Ali Al-Hussaini, Bing Song i Xiao-Qing Wei. "IL-34 SuppressesCandida albicansInduced TNFαProduction in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2". Journal of Immunology Research 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/328146.
Pełny tekst źródłaTian, Ying, Sheri E. Kelemen i Michael V. Autieri. "Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli". American Journal of Physiology-Cell Physiology 290, nr 4 (kwiecień 2006): C1083—C1091. http://dx.doi.org/10.1152/ajpcell.00381.2005.
Pełny tekst źródłaHamrick, Terri S., Edward A. Havell, John R. Horton i Paul E. Orndorff. "Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized UnopsonizedEscherichia coli". Infection and Immunity 68, nr 1 (1.01.2000): 125–32. http://dx.doi.org/10.1128/iai.68.1.125-132.2000.
Pełny tekst źródłaBauerle, Kevin Thomas, Jisu Oh, Amy Elizabeth Riek, Adriana Dusso, Anabel L. Castro-Grattoni, R. Ariel Gomez, Maria L. Sequeira-Lopez i Carlos Bernal-Mizrachi. "Vitamin D Deficiency Induces Macrophage Pro-Inflammatory Phenotype via ER Stress-Mediated Activation of Renin-Angiotensin System". Journal of the Endocrine Society 5, Supplement_1 (1.05.2021): A304—A305. http://dx.doi.org/10.1210/jendso/bvab048.620.
Pełny tekst źródłaTorre, Donato, Luisa Gennero, F. M. Baccino, Filippo Speranza, Gilberto Biondi i Agostino Pugliese. "Impaired Macrophage Phagocytosis of Apoptotic Neutrophils in Patients with Human Immunodeficiency Virus Type 1 Infection". Clinical and Vaccine Immunology 9, nr 5 (wrzesień 2002): 983–86. http://dx.doi.org/10.1128/cdli.9.5.983-986.2002.
Pełny tekst źródłaAziz, Athar, Laurent Vanhille, Peer Mohideen, Louise M. Kelly, Claas Otto, Youssef Bakri, Noushine Mossadegh, Sandrine Sarrazin i Michael H. Sieweke. "Development of Macrophages with Altered Actin Organization in the Absence of MafB". Molecular and Cellular Biology 26, nr 18 (15.09.2006): 6808–18. http://dx.doi.org/10.1128/mcb.00245-06.
Pełny tekst źródłaHashimoto, Shin-ichi, Takuji Suzuki, Hong-Yan Dong, Nobuyuki Yamazaki i Kouji Matsushima. "Serial Analysis of Gene Expression in Human Monocytes and Macrophages". Blood 94, nr 3 (1.08.1999): 837–44. http://dx.doi.org/10.1182/blood.v94.3.837.413k02_837_844.
Pełny tekst źródłaMartins, Flávia, Rosa Oliveira, Bruno Cavadas, Filipe Pinto, Ana Patrícia Cardoso, Flávia Castro, Bárbara Sousa i in. "Hypoxia and Macrophages Act in Concert Towards a Beneficial Outcome in Colon Cancer". Cancers 12, nr 4 (28.03.2020): 818. http://dx.doi.org/10.3390/cancers12040818.
Pełny tekst źródłaCummings, Thomas J., Christine M. Hulette, Sandra H. Bigner, Gregory J. Riggins i Roger E. McLendon. "HAM56-Immunoreactive Macrophages in Untreated Infiltrating Gliomas". Archives of Pathology & Laboratory Medicine 125, nr 5 (1.05.2001): 637–41. http://dx.doi.org/10.5858/2001-125-0637-himiui.
Pełny tekst źródłaLuo, Qianting, Xingyang Li, Wenchao Zhong, Wei Cao, Mingjing Zhu, Antong Wu, Wanyi Chen i in. "Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs". Regenerative Biomaterials, 13.12.2021. http://dx.doi.org/10.1093/rb/rbab075.
Pełny tekst źródłaBo, Haotian, Ulrich Aymard Ekomi Moure, Yuanmiao Yang, Jun Pan, Li Li, Miao Wang, Xiaoxue Ke i Hongjuan Cui. "Mycobacterium tuberculosis-macrophage interaction: Molecular updates". Frontiers in Cellular and Infection Microbiology 13 (3.03.2023). http://dx.doi.org/10.3389/fcimb.2023.1062963.
Pełny tekst źródłaYi, D. ‐Y, Q. ‐Y Xu, Y. He, X. ‐Q Zheng, T. ‐C Yang i Y. Lin. "Treponema pallidum protein Tp47 induced prostaglandin E2 to inhibit the phagocytosis in human macrophages". Journal of the European Academy of Dermatology and Venereology, 23.01.2024. http://dx.doi.org/10.1111/jdv.19809.
Pełny tekst źródłaMuhammad, Sajjad, Shafqat Rasul Chaudhry, Gergana Dobreva, Michael T. Lawton, Mika Niemelä i Daniel Hänggi. "Vascular Macrophages as Therapeutic Targets to Treat Intracranial Aneurysms". Frontiers in Immunology 12 (8.03.2021). http://dx.doi.org/10.3389/fimmu.2021.630381.
Pełny tekst źródłaLuque-Campos, Noymar, Felipe A. Bustamante-Barrientos, Carolina Pradenas, Cynthia García, María Jesús Araya, Candice Bohaud, Rafael Contreras-López i in. "The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming". Frontiers in Immunology 12 (4.06.2021). http://dx.doi.org/10.3389/fimmu.2021.624746.
Pełny tekst źródłaXiao, Qiuqun, Jinyan Huang, Xing Wang, Zehong Chen, Weiqi Zhang, Fengjiao Liu, Jiejing Li, Zhimou Yang, Jie Zhan i Yanbin Cai. "Supramolecular Peptide Amphiphile Nanospheres Reprogram Tumor‐associated Macrophage to Reshape the Immune Microenvironment for Enhanced Breast Cancer Immunotherapy". Small, 15.12.2023. http://dx.doi.org/10.1002/smll.202307390.
Pełny tekst źródłavan Stijn, Caroline M., Jason Kim i Rajendra K. Tangirala. "Abstract 549: Adiponectin Modulation of Macrophage Inflammatory and Metabolic Properties is Regulated by Macrophage Polarization Status and Adiponectin Receptor Expression". Arteriosclerosis, Thrombosis, and Vascular Biology 33, suppl_1 (maj 2013). http://dx.doi.org/10.1161/atvb.33.suppl_1.a549.
Pełny tekst źródłaHeaster, Tiffany M., Alexa R. Heaton, Paul M. Sondel i Melissa C. Skala. "Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue". Frontiers in Bioengineering and Biotechnology 9 (20.04.2021). http://dx.doi.org/10.3389/fbioe.2021.644648.
Pełny tekst źródła