Gotowa bibliografia na temat „Maps over finite fields”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Maps over finite fields”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Maps over finite fields"

1

de Cataldo, Mark Andrea A. "Proper Toric Maps Over Finite Fields." International Mathematics Research Notices 2015, no. 24 (2015): 13106–21. http://dx.doi.org/10.1093/imrn/rnv094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Berson, Joost. "Linearized polynomial maps over finite fields." Journal of Algebra 399 (February 2014): 389–406. http://dx.doi.org/10.1016/j.jalgebra.2013.10.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Misiurewicz, Michał, John G. Stevens, and Diana M. Thomas. "Iterations of linear maps over finite fields." Linear Algebra and its Applications 413, no. 1 (February 2006): 218–34. http://dx.doi.org/10.1016/j.laa.2005.09.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vivaldi, F. "Geometry of linear maps over finite fields." Nonlinearity 5, no. 1 (January 1, 1992): 133–47. http://dx.doi.org/10.1088/0951-7715/5/1/005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Küçüksakallı, Ömer. "Value sets of Lattès maps over finite fields." Journal of Number Theory 143 (October 2014): 262–78. http://dx.doi.org/10.1016/j.jnt.2014.04.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

DEMPWOLFF, U., J. CHRIS FISHER, and ALLEN HERMAN. "SEMILINEAR TRANSFORMATIONS OVER FINITE FIELDS ARE FROBENIUS MAPS." Glasgow Mathematical Journal 42, no. 2 (May 2000): 289–95. http://dx.doi.org/10.1017/s0017089500020164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mullen, G. L., D. Wan, and Q. Wang. "VALUE SETS OF POLYNOMIAL MAPS OVER FINITE FIELDS." Quarterly Journal of Mathematics 64, no. 4 (October 17, 2012): 1191–96. http://dx.doi.org/10.1093/qmath/has026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Morton, Patrick. "Periods of Maps on Irreducible Polynomials over Finite Fields." Finite Fields and Their Applications 3, no. 1 (January 1997): 11–24. http://dx.doi.org/10.1006/ffta.1996.0168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Küçüksakallı, Ömer. "Value sets of bivariate Chebyshev maps over finite fields." Finite Fields and Their Applications 36 (November 2015): 189–202. http://dx.doi.org/10.1016/j.ffa.2015.08.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

FLYNN, RYAN, and DEREK GARTON. "GRAPH COMPONENTS AND DYNAMICS OVER FINITE FIELDS." International Journal of Number Theory 10, no. 03 (March 18, 2014): 779–92. http://dx.doi.org/10.1142/s1793042113501224.

Pełny tekst źródła
Streszczenie:
For polynomials and rational maps of fixed degree over a finite field, we bound both the average number of components of their functional graphs as well as the average number of periodic points of their associated dynamical systems.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Maps over finite fields"

1

Jogia, Danesh Michael Mathematics &amp Statistics Faculty of Science UNSW. "Algebraic aspects of integrability and reversibility in maps." Publisher:University of New South Wales. Mathematics & Statistics, 2008. http://handle.unsw.edu.au/1959.4/40947.

Pełny tekst źródła
Streszczenie:
We study the cause of the signature over finite fields of integrability in two dimensional discrete dynamical systems by using theory from algebraic geometry. In particular the theory of elliptic curves is used to prove the major result of the thesis: that all birational maps that preserve an elliptic curve necessarily act on that elliptic curve as addition under the associated group law. Our result generalises special cases previously given in the literature. We apply this theorem to the specific cases when the ground fields are finite fields of prime order and the function field $mathbb{C}(t
Style APA, Harvard, Vancouver, ISO itp.
2

Voloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.

Pełny tekst źródła
Streszczenie:
<p>This thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions
Style APA, Harvard, Vancouver, ISO itp.
4

Lockard, Shannon Renee. "Random vectors over finite fields." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181251515/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Giuzzi, Luca. "Hermitian varieties over finite fields." Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326913.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sharkey, Andrew. "Random polynomials over finite fields." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299963.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Park, Jang-Woo. "Discrete dynamics over finite fields." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937730/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cooley, Jenny. "Cubic surfaces over finite fields." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66304/.

Pełny tekst źródła
Streszczenie:
It is well-known that the set of rational points on an elliptic curve forms an abelian group. When the curve is given as a plane cubic in Weierstrass form the group operation is defined via tangent and secant operations. Let S be a smooth cubic surface over a field K. Again one can define tangent and secant operations on S. These do not give S(K) a group structure, but one can still ask for the size of a minimal generating set. In Chapter 2 of the thesis I show that if S is a smooth cubic surface over a field K with at least 4 elements, and if S contains a skew pair of lines defined over K, th
Style APA, Harvard, Vancouver, ISO itp.
9

Lotter, Ernest Christiaan. "On towers of function fields over finite fields." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1283.

Pełny tekst źródła
Streszczenie:
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007.<br>Explicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vert
Style APA, Harvard, Vancouver, ISO itp.
10

Lötter, Ernest C. "On towers of function fields over finite fields /." Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Maps over finite fields"

1

Moreno, Carlos J. Algebraic curves over finite fields. Cambridge [England]: Cambridge University Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Projective geometries over finite fields. 2nd ed. Oxford: Clarendon Press, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jacobson, Nathan. Finite-dimensional division algebras over fields. Berlin: Springer, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dmitri, Kaledin, and Tschinkel Yuri, eds. Higher-dimensional geometry over finite fields. Amsterdam, Netherlands: IOS Press, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Jacobson, Nathan. Finite-Dimensional Division Algebras over Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-02429-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fried, Michael D., ed. Applications of Curves over Finite Fields. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/conm/245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Noriko, Yui, ed. Arithmetic of diagonal hypersurfaces over finite fields. Cambridge: Cambridge University Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hansen, Søren Have. Rational points on curves over finite fields. [Aarhus, Denmark: Aarhus Universitet, Matematisk Institut, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Alam, Shajahan. Zeta-functions of curves over finite fields. Manchester: UMIST, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

A, Huang Ming-Deh, ed. Primality testing and Abelian varieties over finite fields. Berlin: Springer-Verlag, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Maps over finite fields"

1

Cafure, Antonio, Guillermo Matera, and Ariel Waissbein. "Efficient Inversion of Rational Maps Over Finite Fields." In Algorithms in Algebraic Geometry, 55–77. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-75155-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Maubach, Stefan, and Roel Willems. "Keller Maps of Low Degree over Finite Fields." In Springer Proceedings in Mathematics & Statistics, 477–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05681-4_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zippel, Richard. "Factoring over Finite Fields." In Effective Polynomial Computation, 293–302. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3188-3_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tsfasman, Michael, Serge Vlǎduţ, and Dmitry Nogin. "Curves over finite fields." In Mathematical Surveys and Monographs, 133–89. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/139/03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hachenberger, Dirk, and Dieter Jungnickel. "Matrices Over Finite Fields." In Topics in Galois Fields, 297–353. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60806-4_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chahal, J. S. "Equations over Finite Fields." In Topics in Number Theory, 147–62. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0439-3_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Stix, Jakob. "Sections over Finite Fields." In Lecture Notes in Mathematics, 197–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30674-7_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rosen, Michael. "Polynomials over Finite Fields." In Graduate Texts in Mathematics, 1–9. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-6046-0_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mignotte, Maurice. "Polynomials Over Finite Fields." In Mathematics for Computer Algebra, 229–88. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9171-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ireland, Kenneth, and Michael Rosen. "Equations over Finite Fields." In A Classical Introduction to Modern Number Theory, 138–50. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Maps over finite fields"

1

Wang, Xiuling, Darrell W. Pepper, Yitung Chen, and Hsuan-Tsung Hsieh. "An H-Adaptive Finite Element Model for Constructing 3-D Wind Fields." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60145.

Pełny tekst źródła
Streszczenie:
Calculating wind velocities accurately and efficiently is the key to successfully assessing wind fields over irregular terrain. In the finite element method, decreasing individual element size (increasing the mesh density) and increasing shape function interpolation order are known to improve accuracy. However, computational speed is typically impaired, along with tremendous increases in computational storage. This problem becomes acutely obvious when dealing with atmospheric flows. An h-adaptation scheme, which allows one to start with a coarse mesh that ultimately refines in high gradients r
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Xiuling, Darrell W. Pepper, Brenda Buck, and Dirk Goossens. "Constructing 3-D Wind Fields for Nellis Dunes in Nevada." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68863.

Pełny tekst źródła
Streszczenie:
An h-adaptive, mass consistent finite element model (FEM) is used to construct 3-D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled by a–posteriori error estimator based on the L2 norm. In the h-adaptive FEM algorithm, large element sizes are typically associated with computational regions where the flow is smooth and small errors; small element sizes are attributed to fast changing flow regions and large errors. The adaptive procedure uses mesh refinement/unrefinement to satisfy error criteria
Style APA, Harvard, Vancouver, ISO itp.
3

Pepper, Darrell W., and Xiuling Wang. "An Advanced Numerical Model for Assessing 3-D Wind Fields." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34680.

Pełny tekst źródła
Streszczenie:
An h-adaptive mass consistent finite element model (FEM) is developed for constructing 3-D wind fields over irregular terrain. The h-adaptive FEM allows the element size to be changed dynamically according to local flow and topographic features. The mesh is refined and unrefined to satisfy preset error criteria. Localized high resolution wind fields can be constructed. The FEM model uses a variational method in an integral function that minimizes the variance of the difference between the observed and analyzed variable. Simulation results are presented for constructing 3-D wind fields for two
Style APA, Harvard, Vancouver, ISO itp.
4

Wildberger, N. J. "Neuberg cubics over finite fields." In Proceedings of the First SAGA Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793430_0027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Draper, Stark C., and Sheida Malekpour. "Compressed sensing over finite fields." In 2009 IEEE International Symposium on Information Theory - ISIT. IEEE, 2009. http://dx.doi.org/10.1109/isit.2009.5205666.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tan, Vincent Y. F., Laura Balzano, and Stark C. Draper. "Rank minimization over finite fields." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033722.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

von zur Gathen, Joachim. "Irreducible trinomials over finite fields." In the 2001 international symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/384101.384146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ronyai, Lajos. "Factoring polynomials over finite fields." In 28th Annual Symposium on Foundations of Computer Science. IEEE, 1987. http://dx.doi.org/10.1109/sfcs.1987.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Darbandi, Masoud, Mohammad Reza Ghorbani, and Hamed Darbandi. "The Uncertainties of Continuum-Based CFD Solvers to Perform Microscale Hot-Wire Anemometer Simulations in Flow Fields Close to Transitional Regime." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6697.

Pełny tekst źródła
Streszczenie:
In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot–wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain si
Style APA, Harvard, Vancouver, ISO itp.
10

Lee, Moon Ho, and Yuri L. Borissov. "On Jacket transforms over finite fields." In 2009 IEEE International Symposium on Information Theory - ISIT. IEEE, 2009. http://dx.doi.org/10.1109/isit.2009.5205783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!