Gotowa bibliografia na temat „Mathematical models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mathematical models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mathematical models"
Gardiner, Tony, i Gerd Fischer. "Mathematical Models". Mathematical Gazette 71, nr 455 (marzec 1987): 94. http://dx.doi.org/10.2307/3616334.
Pełny tekst źródłaDenton, Brian, Pam Denton i Peter Lorimer. "Making Mathematical Models". Mathematical Gazette 78, nr 483 (listopad 1994): 364. http://dx.doi.org/10.2307/3620232.
Pełny tekst źródłaPavankumari, V. "Mathematical and Stochastic Growth Models". International Journal for Research in Applied Science and Engineering Technology 9, nr 11 (30.11.2021): 1576–82. http://dx.doi.org/10.22214/ijraset.2021.39055.
Pełny tekst źródłaKumari, V. Pavan, Venkataramana Musala i M. Bhupathi Naidu. "Mathematical and Stochastic Growth Models". International Journal for Research in Applied Science and Engineering Technology 10, nr 5 (31.05.2022): 987–89. http://dx.doi.org/10.22214/ijraset.2022.42330.
Pełny tekst źródłaSuzuki, Takashi. "Mathematical models of tumor growth systems". Mathematica Bohemica 137, nr 2 (2012): 201–18. http://dx.doi.org/10.21136/mb.2012.142866.
Pełny tekst źródłaKogalovsky, M. R. "Digital Libraries of Economic-Mathematical Models: Economic-Mathematical and Information Models". Market Economy Problems, nr 4 (2018): 89–97. http://dx.doi.org/10.33051/2500-2325-2018-4-89-97.
Pełny tekst źródłaBanasiak, J. "Kinetic models – mathematical models of everything?" Physics of Life Reviews 16 (marzec 2016): 140–41. http://dx.doi.org/10.1016/j.plrev.2016.01.005.
Pełny tekst źródłaKleiner, Johannes. "Mathematical Models of Consciousness". Entropy 22, nr 6 (30.05.2020): 609. http://dx.doi.org/10.3390/e22060609.
Pełny tekst źródłaByrne, Patrick, S. D. Howison, F. P. Kelly i P. Wilmott. "Mathematical Models in Finance." Statistician 45, nr 3 (1996): 389. http://dx.doi.org/10.2307/2988481.
Pełny tekst źródłaKozhanov, V. S., S. O. Ustalkov i A. O. Khudoshina. "TOW CABLES MATHEMATICAL MODELS". Mathematical Methods in Technologies and Technics, nr 5 (2022): 62–68. http://dx.doi.org/10.52348/2712-8873_mmtt_2022_5_62.
Pełny tekst źródłaRozprawy doktorskie na temat "Mathematical models"
Tonner, Jaromír. "Overcomplete Mathematical Models with Applications". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.
Pełny tekst źródłaWidmer, Tobias K. "Reusable mathematical models". Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.
Pełny tekst źródłaMaggiori, Claudia. "Mathematical models in biomedicine". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.
Pełny tekst źródłaMathewson, Donald Jeffrey. "Mathematical models of immunity". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.
Pełny tekst źródłaScience, Faculty of
Physics and Astronomy, Department of
Graduate
Heron, Dale Robert. "Mathematical models of superconductivity". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.
Pełny tekst źródłaBozic, Ivana. "Mathematical Models of Cancer". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.
Pełny tekst źródłaMathematics
Luther, Roger. "Mathematical models of kleptoparasitism". Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.
Pełny tekst źródłaMazzag, Barbara Cathrine. "Mathematical models in biology /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Pełny tekst źródłaNiederhauser, Beat. "Mathematical Aspects of Hopfield models". [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.
Pełny tekst źródłaKowalewski, Jacob. "Mathematical Models in Cellular Biophysics". Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.
Pełny tekst źródłaCellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.
Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. Analytical and numerical methods have been used to solve the partial differential equations that are expressed in the model. The choice of method depends mostly on the complexity of the geometry in the model.
Calcium ions (Ca2+) are known to be involved in several intracellular signaling mechanisms. One interesting concept within this field is a signaling microdomain where the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) membrane physically interacts with plasma membrane proteins. This microdomain has been shown to cause the intracellular Ca2+ level to oscillate. The second model in this thesis describes a signaling network involving both ER membrane bound and plasma membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. A MATLAB® toolbox was developed to implement the signaling networks and simulate its properties. This model was also implemented using Virtual cell.
The results show a high resemblance between the mathematical model and FRAP data in the D1R study. The model shows a distinct difference in recovery characteristics of simulated FRAP experiments on whole dendrites and dendritic spines, due to differences in geometry. The model can also explain trapping of D1R in dendritic spines.
The results of the Ca2+ signaling model show that stimulation of IP3R can cause Ca2+ oscillations in the same frequency range as has been seen in experiments. The removing of SOC channels from the model can alter the characteristics as well as qualitative appearance of Ca2+ oscillations.
Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling presenteras två studier där matematiska modeller har använts för att förklara hur två av dess processer uppkommer.
Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och numeriska metoder har använts för att lösa de partiella differentialekvationer som uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i modellen.
Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett intressant koncept inom detta fält är en signalerande mikrodomän där inositol 1,4,5-trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess egenskaper. Denna modell implementerades även i Virtual cell.
Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines.
Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa uppkomsten av Ca2+-oscillationer.
Książki na temat "Mathematical models"
Fischer, Gerd, red. Mathematical Models. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18865-8.
Pełny tekst źródłaTanguy, Jean-Michel, red. Mathematical Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118557853.
Pełny tekst źródłaErshov, I͡Uriĭ Leonidovich. Constructive models. New York: Consultants Bureau, 2000.
Znajdź pełny tekst źródłaHrsg, Crampin Mike, red. Mathematical models and methods: Mathematical modelling. Milton Keynes: Open University, 1993.
Znajdź pełny tekst źródłaTorres, Pedro J. Mathematical Models with Singularities. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-106-2.
Pełny tekst źródłaBorisov, Andrey Valerievich, i Anatoly Vlasovich Chigarev. Mathematical Models of Exoskeleton. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97733-7.
Pełny tekst źródłaStamova, Ivanka, i Gani Stamov. Applied Impulsive Mathematical Models. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28061-5.
Pełny tekst źródłaMayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.
Pełny tekst źródłaAnsorge, Rainer. Mathematical Models of Fluiddynamics. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2002. http://dx.doi.org/10.1002/3527602771.
Pełny tekst źródłaZazzu, Valeria, Maria Brigida Ferraro i Mario R. Guarracino, red. Mathematical Models in Biology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23497-7.
Pełny tekst źródłaCzęści książek na temat "Mathematical models"
Holst, Niels. "Mathematical Models". W Decision Support Systems for Weed Management, 3–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44402-0_1.
Pełny tekst źródłaGross, Sven, i Arnold Reusken. "Mathematical models". W Springer Series in Computational Mathematics, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19686-7_2.
Pełny tekst źródłaPulido-Bosch, Antonio. "Mathematical Models". W Principles of Karst Hydrogeology, 195–240. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55370-8_6.
Pełny tekst źródłaHinrichsen, Diederich, i Anthony J. Pritchard. "Mathematical Models". W Mathematical Systems Theory I, 1–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26410-8_1.
Pełny tekst źródłaMarquardt, Wolfgang, Jan Morbach, Andreas Wiesner i Aidong Yang. "Mathematical Models". W OntoCAPE, 323–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04655-1_9.
Pełny tekst źródłaMauergauz, Yuri. "Mathematical Models". W Advanced Planning and Scheduling in Manufacturing and Supply Chains, 43–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27523-9_2.
Pełny tekst źródłaSkiena, Steven S. "Mathematical Models". W Texts in Computer Science, 201–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55444-0_7.
Pełny tekst źródłaThorn, Colin E. "Mathematical models". W An Introduction to Theoretical Geomorphology, 193–212. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9441-2_13.
Pełny tekst źródłaLayer, Edward. "Mathematical Models". W Modelling of Simplified Dynamical Systems, 3–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9_2.
Pełny tekst źródłaPayne, Stephen. "Mathematical Models". W Cerebral Autoregulation, 39–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31784-7_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Mathematical models"
Morrow, Gregory J., i Wei-Shih Yang. "Probability Models in Mathematical Physics". W Conference on Probability Models in Mathematical Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539852.
Pełny tekst źródłaWeckesser, Markus, Malte Lochau, Michael Ries i Andy Schürr. "Mathematical Programming for Anomaly Analysis of Clafer Models". W MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239398.
Pełny tekst źródłaTweedie, Lisa, Robert Spence, Huw Dawkes i Hus Su. "Externalising abstract mathematical models". W the SIGCHI conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/238386.238587.
Pełny tekst źródłaLi, Yajun. "Mathematical models for diode laser beams". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thr5.
Pełny tekst źródłaMaskal, Alan B., i Fatih Aydogan. "Mathematical Models of Spacer Grids". W 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60098.
Pełny tekst źródłaChilbert, M., J. Myklebust, T. Prieto, T. Swiontek i A. Sances. "Mathematical models of electrical injury". W Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94632.
Pełny tekst źródłaBogdanov, Yu I., A. Yu Chernyavskiy, A. S. Holevo, V. F. Lukichev i A. A. Orlikovsky. "Mathematical models of quantum noise". W International Conference on Micro-and Nano-Electronics 2012, redaktor Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017396.
Pełny tekst źródłaNedostup, Leonid, Yuriy Bobalo, Myroslav Kiselychnyk i Oxana Lazko. "Production Systems Complex Mathematical Models". W 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. IEEE, 2007. http://dx.doi.org/10.1109/cadsm.2007.4297505.
Pełny tekst źródłaSanjana, N., M. S. Deepthi, H. R. Shashidhara i Yajunath Kaliyath. "Comparison of Memristor Mathematical Models". W 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2022. http://dx.doi.org/10.1109/discover55800.2022.9974669.
Pełny tekst źródłaDowding, Kevin. "Quantitative Validation of Mathematical Models". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24308.
Pełny tekst źródłaRaporty organizacyjne na temat "Mathematical models"
Equihua, M., i O. Perez-Maqueo. Mathematical Modeling and Conservation. American Museum of Natural History, 2010. http://dx.doi.org/10.5531/cbc.ncep.0154.
Pełny tekst źródłaMayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/6911694.
Pełny tekst źródłaMayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), wrzesień 1992. http://dx.doi.org/10.2172/6946876.
Pełny tekst źródłaMayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), sierpień 1989. http://dx.doi.org/10.2172/5246564.
Pełny tekst źródłaKaper, H. Mathematical models of superconductivity. Office of Scientific and Technical Information (OSTI), marzec 1991. http://dx.doi.org/10.2172/5907100.
Pełny tekst źródłaRinghofer, Christian. Mathematical Models for VLSI Device Simulation. Fort Belvoir, VA: Defense Technical Information Center, listopad 1987. http://dx.doi.org/10.21236/ada191125.
Pełny tekst źródłaMayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/889747.
Pełny tekst źródłaLovianova, Iryna V., Dmytro Ye Bobyliev i Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], wrzesień 2019. http://dx.doi.org/10.31812/123456789/3267.
Pełny tekst źródłaDawson, Steven. The Genesis of Cyberscience and its Mathematical Models (CYBERSCIENCE). Fort Belvoir, VA: Defense Technical Information Center, luty 2005. http://dx.doi.org/10.21236/ada431570.
Pełny tekst źródłaSteefel, C., D. Moulton, G. Pau, K. Lipnikov, J. Meza, P. Lichtner, T. Wolery i in. Mathematical Formulation Requirements and Specifications for the Process Models. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1000859.
Pełny tekst źródła