Artykuły w czasopismach na temat „Membrane d’échangeuse de protons”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Membrane d’échangeuse de protons”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sokolov, Valerij S., Vsevolod Yu Tashkin, Darya D. Zykova, Yulia V. Kharitonova, Timur R. Galimzyanov, and Oleg V. Batishchev. "Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane." Membranes 13, no. 8 (2023): 722. http://dx.doi.org/10.3390/membranes13080722.
Pełny tekst źródłaAbabneh, Omar, Abdallah Barjas Qaswal, Ahmad Alelaumi, et al. "Proton Quantum Tunneling: Influence and Relevance to Acidosis-Induced Cardiac Arrhythmias/Cardiac Arrest." Pathophysiology 28, no. 3 (2021): 400–436. http://dx.doi.org/10.3390/pathophysiology28030027.
Pełny tekst źródłaWeichselbaum, Ewald, and Peter Pohl. "Protons at the membrane water interface." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1859 (September 2018): e117. http://dx.doi.org/10.1016/j.bbabio.2018.09.346.
Pełny tekst źródłaRayabharam, Archith, and N. R. Aluru. "Quantum water desalination: Water generation through separate pathways for protons and hydroxide ions in membranes." Journal of Applied Physics 132, no. 19 (2022): 194302. http://dx.doi.org/10.1063/5.0122324.
Pełny tekst źródłaFarahani, Ramin M. "An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink." Biomolecules 15, no. 1 (2025): 87. https://doi.org/10.3390/biom15010087.
Pełny tekst źródłaAbdallat, Mahmoud, Abdallah Barjas Qaswal, Majed Eftaiha, et al. "A mathematical modeling of the mitochondrial proton leak via quantum tunneling." AIMS Biophysics 11, no. 2 (2024): 189–233. http://dx.doi.org/10.3934/biophy.2024012.
Pełny tekst źródłaKeller, David, Seema Singh, Paola Turina, Roderick Capaldi, and Carlos Bustamante. "Structure of ATP synthase by SFM and single-particle image analysis." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 722–23. http://dx.doi.org/10.1017/s0424820100139986.
Pełny tekst źródłaBramhall, John. "Conductance routes for protons across membrane barriers." Biochemistry 26, no. 10 (1987): 2848–55. http://dx.doi.org/10.1021/bi00384a028.
Pełny tekst źródłaM., Ambaga, Tumen-Ulzii A., and Buyantushig T. "THE BUFFERING CAPACITY OF ERYTHROCYTE MEMBRANE SURROUNDINGS IN RELATION TO FREE PROTONS INSIGHTOF NEW ELUCIDATION OF EIGTH AND NINTH STAGES OF THE MEMBRANE REDOXY POTENTIAL THREE STATE DEPENDENT 9 STEPPED FULL CYCLE OF PROTON CONDUCTANCE IN THE HUMAN BODY." International Journal of Advanced Research 10, no. 11 (2022): 29–33. http://dx.doi.org/10.21474/ijar01/15638.
Pełny tekst źródłaVidilaseris, Keni, Juho Kellosalo, and Adrian Goldman. "A high-throughput method for orthophosphate determination of thermostable membrane-bound pyrophosphatase activity." Analytical Methods 10, no. 6 (2018): 646–51. http://dx.doi.org/10.1039/c7ay02558k.
Pełny tekst źródłaKluka, Ľubomír, Ernest Šturdík, Štefan Baláž, et al. "Membrane proton transport mediated by phenylhydrazonopropanedinitriles." Collection of Czechoslovak Chemical Communications 53, no. 1 (1988): 186–97. http://dx.doi.org/10.1135/cccc19880186.
Pełny tekst źródłaArdalan, Afshan, Matthew D. Smith, and Masoud Jelokhani-Niaraki. "Uncoupling Proteins and Regulated Proton Leak in Mitochondria." International Journal of Molecular Sciences 23, no. 3 (2022): 1528. http://dx.doi.org/10.3390/ijms23031528.
Pełny tekst źródłaChistyakov, V. A., Yu O. Smirnova, and I. Alperovich. "Feasibility of the C60 Fullerene Antioxidant Properties: Study with Density Functional Theory Computer Modeling." International Journal of Mathematics and Computers in Simulation 15 (November 27, 2021): 107–9. http://dx.doi.org/10.46300/9102.2021.15.20.
Pełny tekst źródłaBrzezinski, Peter, Joachim Reimann, and Pia Ädelroth. "Molecular architecture of the proton diode of cytochrome c oxidase." Biochemical Society Transactions 36, no. 6 (2008): 1169–74. http://dx.doi.org/10.1042/bst0361169.
Pełny tekst źródłaFrank, Pinar, Bernhard Siebenhofer, Theresa Hanzer, et al. "Proteo-lipobeads for the oriented encapsulation of membrane proteins." Soft Matter 11, no. 15 (2015): 2906–8. http://dx.doi.org/10.1039/c4sm02646b.
Pełny tekst źródłaPorter, R. K., and M. D. Brand. "Mitochondrial proton conductance and H+/0 ratio are independent of electron transport rate in isolated hepatocytes." Biochemical Journal 310, no. 2 (1995): 379–82. http://dx.doi.org/10.1042/bj3100379.
Pełny tekst źródłaDeCoursey, Thomas E. "Voltage and pH sensing by the voltage-gated proton channel, H V 1." Journal of The Royal Society Interface 15, no. 141 (2018): 20180108. http://dx.doi.org/10.1098/rsif.2018.0108.
Pełny tekst źródłaRayabharam, Archith, and N. R. Aluru. "Interstitial proton transport through defective MXenes." Applied Physics Letters 120, no. 21 (2022): 211601. http://dx.doi.org/10.1063/5.0098709.
Pełny tekst źródłaPasternak, C. A., C. L. Bashford, and G. Menestrina. "Mechanisms of attack and defence at the cell surface: The use of phospholipid bilayers as models for cell membrane." Bioscience Reports 9, no. 4 (1989): 503–7. http://dx.doi.org/10.1007/bf01117054.
Pełny tekst źródłaRahmawati, Sitti, Cynthia Linaya Radiman, and Muhamad Abdulkadir Martoprawiro. "Ab Initio Study of Proton Transfer and Hydration in Phosphorylated Nata de Coco." Indonesian Journal of Chemistry 17, no. 3 (2017): 523. http://dx.doi.org/10.22146/ijc.24895.
Pełny tekst źródłaJUNGE, WOLFGANG. "Protons, the Thylakoid Membrane, and the Chloroplast ATP Synthase." Annals of the New York Academy of Sciences 574, no. 1 Bicarbonate, (1989): 268–86. http://dx.doi.org/10.1111/j.1749-6632.1989.tb25164.x.
Pełny tekst źródłaTan, Susie S. S., Peter C. Hauser, Nikolas A. Chaniotakis, Gabriela Suter, and Wilhelm Simon. "Anion-Selective Optical Sensors Based on a Coextraction of Anion-Proton Pairs into a Solvent-Polymeric Membrane." CHIMIA 43, no. 9 (1989): 257. https://doi.org/10.2533/chimia.1989.257.
Pełny tekst źródłaShi, Le, Ruggero Rossi, Moon Son, et al. "Using reverse osmosis membranes to control ion transport during water electrolysis." Energy & Environmental Science 13, no. 9 (2020): 3138–48. http://dx.doi.org/10.1039/d0ee02173c.
Pełny tekst źródłaLande, M. B., N. A. Priver, and M. L. Zeidel. "Determinants of apical membrane permeabilities of barrier epithelia." American Journal of Physiology-Cell Physiology 267, no. 2 (1994): C367—C374. http://dx.doi.org/10.1152/ajpcell.1994.267.2.c367.
Pełny tekst źródłaJunoh, Hazlina, Juhana Jaafar, Nik Abdul Hadi Md Nordin, et al. "Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure." Membranes 10, no. 3 (2020): 34. http://dx.doi.org/10.3390/membranes10030034.
Pełny tekst źródłaHill, Warren G., Eyad Almasri, W. Giovanni Ruiz, Gerard Apodaca, and Mark L. Zeidel. "Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation." American Journal of Physiology-Cell Physiology 289, no. 1 (2005): C33—C41. http://dx.doi.org/10.1152/ajpcell.00046.2005.
Pełny tekst źródłaNegrete, H. O., J. P. Lavelle, J. Berg, S. A. Lewis, and M. L. Zeidel. "Permeability properties of the intact mammalian bladder epithelium." American Journal of Physiology-Renal Physiology 271, no. 4 (1996): F886—F894. http://dx.doi.org/10.1152/ajprenal.1996.271.4.f886.
Pełny tekst źródłaQi, Han, Zhongwu Li, Yi Tao, et al. "Fabrication of sub-nanometer pores on graphene membrane for ion selective transport." Nanoscale 10, no. 11 (2018): 5350–57. http://dx.doi.org/10.1039/c8nr00050f.
Pełny tekst źródłaKaur, Divya, Xiuhong Cai, Umesh Khaniya, et al. "Tracing the Pathways of Waters and Protons in Photosystem II and Cytochrome c Oxidase." Inorganics 7, no. 2 (2019): 14. http://dx.doi.org/10.3390/inorganics7020014.
Pełny tekst źródłaLanzrein, Markus, Nicole Käsermann, and Christoph Kempf. "Changes in membrane permeability during semliki forest virus induced cell fusion." Bioscience Reports 12, no. 3 (1992): 221–36. http://dx.doi.org/10.1007/bf01121792.
Pełny tekst źródłaKhorana, H. G. "Bacteriorhodopsin, a membrane protein that uses light to translocate protons." Journal of Biological Chemistry 263, no. 16 (1988): 7439–42. http://dx.doi.org/10.1016/s0021-9258(18)68514-x.
Pełny tekst źródłaBRISKIN, DONALD P., and JOHN B. HANSON. "How Does the Plant Plasma Membrane H+-ATPase Pump Protons?" Journal of Experimental Botany 43, no. 3 (1992): 269–89. http://dx.doi.org/10.1093/jxb/43.3.269.
Pełny tekst źródłaLuoto, Heidi H., Erika Nordbo, Alexander A. Baykov, Reijo Lahti, and Anssi M. Malinen. "Membrane Na+-pyrophosphatases Can Transport Protons at Low Sodium Concentrations." Journal of Biological Chemistry 288, no. 49 (2013): 35489–99. http://dx.doi.org/10.1074/jbc.m113.510909.
Pełny tekst źródłaNesterov, Semen V., Lev S. Yaguzhinsky, Raif G. Vasilov, Vasiliy N. Kadantsev, and Alexey N. Goltsov. "Contribution of the Collective Excitations to the Coupled Proton and Energy Transport along Mitochondrial Cristae Membrane in Oxidative Phosphorylation System." Entropy 24, no. 12 (2022): 1813. http://dx.doi.org/10.3390/e24121813.
Pełny tekst źródłaMovellan, Kumar Tekwani, Eszter E. Najbauer, Supriya Pratihar, et al. "Alpha protons as NMR probes in deuterated proteins." Journal of Biomolecular NMR 73, no. 1-2 (2019): 81–91. http://dx.doi.org/10.1007/s10858-019-00230-y.
Pełny tekst źródłaVergara, Eva, Gonzalo Neira, Carolina González, Diego Cortez, Mark Dopson, and David S. Holmes. "Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus." Genes 11, no. 4 (2020): 389. http://dx.doi.org/10.3390/genes11040389.
Pełny tekst źródłaMuljani, S., and A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane." ALCHEMY Jurnal Penelitian Kimia 12, no. 2 (2016): 155. http://dx.doi.org/10.20961/alchemy.12.2.1818.155-166.
Pełny tekst źródłaMuljani, S., and A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane." ALCHEMY Jurnal Penelitian Kimia 12, no. 2 (2016): 155. http://dx.doi.org/10.20961/alchemy.v12i2.1818.
Pełny tekst źródłaKageyama, Miho, Beste Balci, Shotaro Danjo, Kimiyo Nakamichi, and Motoaki Kawase. "Hydrogen and Oxygen Permeability through PEFC Membrane and Membrane Electrode Assembly." ECS Transactions 112, no. 4 (2023): 291–303. http://dx.doi.org/10.1149/11204.0291ecst.
Pełny tekst źródłaFliegel, Larry. "Structural and Functional Changes in the Na+/H+ Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation." International Journal of Molecular Sciences 20, no. 10 (2019): 2378. http://dx.doi.org/10.3390/ijms20102378.
Pełny tekst źródłaWeichselbaum, Ewald, Timur Galimzyanov, Oleg V. Batishchev, Sergey A. Akimov, and Peter Pohl. "Proton Migration on Top of Charged Membranes." Biomolecules 13, no. 2 (2023): 352. http://dx.doi.org/10.3390/biom13020352.
Pełny tekst źródłaRasi-Caldogno, Franca, Maria Chiara Pugliarello, and Maria Ida De Michelis. "Electrogenic Transport of Protons Driven by the Plasma Membrane ATPase in Membrane Vesicles from Radish." Plant Physiology 77, no. 1 (1985): 200–205. http://dx.doi.org/10.1104/pp.77.1.200.
Pełny tekst źródłaSladkov, K. D., and S. S. Kolesnikov. "Model of a Molecular Proton Sensor in Taste Cells." Биологические мембраны Журнал мембранной и клеточной биологии 40, no. 3 (2023): 188–93. http://dx.doi.org/10.31857/s023347552303009x.
Pełny tekst źródłaMoreno Ostertag, Laila, Xiao Ling, Katrin F. Domke, Sapun H. Parekh, and Markus Valtiner. "Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces." Physical Chemistry Chemical Physics 20, no. 17 (2018): 11722–29. http://dx.doi.org/10.1039/c8cp01625a.
Pełny tekst źródłaBerg, Jamie R., Christian M. Spilker, and Simon A. Lewis. "Modulation of polymyxin B effects on mammalian urinary bladder." American Journal of Physiology-Renal Physiology 275, no. 2 (1998): F204—F215. http://dx.doi.org/10.1152/ajprenal.1998.275.2.f204.
Pełny tekst źródłaStainbrook, Sarah C., and Joseph M. Jez. "Protecting P-type plasma membrane H+-ATPases from ROS." Biochemical Journal 478, no. 8 (2021): 1511–13. http://dx.doi.org/10.1042/bcj20210109.
Pełny tekst źródłaSTUCHEBRUKHOV, ALEXEI A. "ELECTRON TRANSFER REACTIONS COUPLED TO PROTON TRANSLOCATION: CYTOCHROME OXIDASE, PROTON PUMPS, AND BIOLOGICAL ENERGY TRANSDUCTION." Journal of Theoretical and Computational Chemistry 02, no. 01 (2003): 91–118. http://dx.doi.org/10.1142/s0219633603000318.
Pełny tekst źródłaAusili, Alessio, Inés Rodríguez-González, Alejandro Torrecillas, José A. Teruel, and Juan C. Gómez-Fernández. "Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains." Biomolecules 11, no. 2 (2021): 220. http://dx.doi.org/10.3390/biom11020220.
Pełny tekst źródłaS, Mohanapriya, and Raj V. "Preparation and Characterization of Nano Titania modified PVA-Pectin polymer electrolyte membranes for DMFC." International Journal of Research in Science 4, no. 2 (2018): 6. http://dx.doi.org/10.24178/ijrs.2018.4.2.06.
Pełny tekst źródłaKhademi, Shahram, and Robert M. Stroud. "The Amt/MEP/Rh Family: Structure of AmtB and the Mechanism of Ammonia Gas Conduction." Physiology 21, no. 6 (2006): 419–29. http://dx.doi.org/10.1152/physiol.00051.2005.
Pełny tekst źródła