Artykuły w czasopismach na temat „Membrane-free battery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Membrane-free battery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sirugaloor, Thangavel Senthilkumar, Enrique Ibáñez León Santiago, Paula Navalpotro, et al. "Membrane-free Zn hybrid redox flow battery using water-in-salt aqueous biphasic electrolytes." Journal of Power Sources 608 (June 5, 2024): 234660. https://doi.org/10.1016/j.jpowsour.2024.234660.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Marc Anderson, and Rebeca Marcilla. "A Membrane-Free Redox Flow Battery with Two Immiscible Redox." Angewandte Chemie International Edition 57, no. 15 (2017): 3853. https://doi.org/10.1002/anie.201704318.
Pełny tekst źródłaPaula, Navalpotro, E. Ibanez Santiago, Pedraza Eduardo, and Marcilla Rebeca. "A neutral pH aqueous biphasic system applied to both static and flow membrane-free battery." Energy Storage Materials 56, no. 2023 (2023): 403–11. https://doi.org/10.1016/j.ensm.2023.01.033.
Pełny tekst źródłaXu, Pengcheng, Congxin Xie, Chenhui Wang, et al. "A membrane-free interfacial battery with high energy density." Chemical Communications 54, no. 82 (2018): 11626–29. http://dx.doi.org/10.1039/c8cc06048g.
Pełny tekst źródłaNavalpotro, Paula, Santiago Enrique Ibañez, Eduardo Pedraza, and Rebeca Marcilla. "Towards Totally Aqueous Membrane-Free Flow Batteries: Fundamentals and Challenges." ECS Meeting Abstracts MA2023-02, no. 4 (2023): 808. http://dx.doi.org/10.1149/ma2023-024808mtgabs.
Pełny tekst źródłaKim, Jeongwon, Arim Seong, Yejin Yang, et al. "Indirect surpassing CO2 utilization in membrane-free CO2 battery." Nano Energy 82 (April 2021): 105741. http://dx.doi.org/10.1016/j.nanoen.2020.105741.
Pełny tekst źródłaWang, Xiao, Amir Lashgari, Jingchao Chai, and Jianbing “Jimmy” Jiang. "A membrane-free, aqueous/nonaqueous hybrid redox flow battery." Energy Storage Materials 45 (March 2022): 1100–1108. http://dx.doi.org/10.1016/j.ensm.2021.11.008.
Pełny tekst źródłaYang, Yuan, James Loomis, Hadi Ghasemi, et al. "Membrane-Free Battery for Harvesting Low-Grade Thermal Energy." Nano Letters 14, no. 11 (2014): 6578–83. http://dx.doi.org/10.1021/nl5032106.
Pełny tekst źródłaDing, Yu, Yu Zhao, and Guihua Yu. "A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery." Nano Letters 15, no. 6 (2015): 4108–13. http://dx.doi.org/10.1021/acs.nanolett.5b01224.
Pełny tekst źródłaP., Navalpotro, Palma J., Marcilla R., M. S. S. Neves Catarina, G. Freire Mara, and A. P. Coutinho João. "Pioneering Use of Ionic Liquid-Based Aqueous Biphasic Systems as Membrane-Free Batteries." Advanced Science 5, no. 10 (2018): 1800576. https://doi.org/10.1002/advs.201800576.
Pełny tekst źródłaIbanez, Santiago Enrique, Paula Navalpotro, Ignacio Almonacid, Eduardo Pedraza, and Rebeca Marcilla. "Close Contact without Mixing: All-Aqueous Membrane-Free Flow Battery." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 1996. http://dx.doi.org/10.1149/ma2022-01481996mtgabs.
Pełny tekst źródłaHou, Singyuk, Long Chen, Xiulin Fan, and Chunsheng Wang. "High Energy and Low-Cost Membrane-Free Chlorine Flow Battery." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 488. http://dx.doi.org/10.1149/ma2022-013488mtgabs.
Pełny tekst źródłaWang, Di, Qiulong Wei, Jinzhi Sheng, et al. "Flexible additive free H2V3O8nanowire membrane as cathode for sodium ion batteries." Physical Chemistry Chemical Physics 18, no. 17 (2016): 12074–79. http://dx.doi.org/10.1039/c6cp00745g.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Marc Anderson, and Rebeca Marcilla. "A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes." Angewandte Chemie 129, no. 41 (2017): 12634–39. http://dx.doi.org/10.1002/ange.201704318.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Marc Anderson, and Rebeca Marcilla. "A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes." Angewandte Chemie International Edition 56, no. 41 (2017): 12460–65. http://dx.doi.org/10.1002/anie.201704318.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Perales Vanesa Muñoz, et al. "Membrane-free redox flow battery: From the idea to the market." APL Energy 3 (June 7, 2025): 012001. https://doi.org/10.1063/5.0231462.
Pełny tekst źródłaHao, Xin, Jiugang Hu, Zongju Zhang, et al. "Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane." Journal of Materials Chemistry A 9, no. 25 (2021): 14265–69. http://dx.doi.org/10.1039/d1ta01697k.
Pełny tekst źródłaLiu, Siyang, Jing Wu, Jiaqi Huang, Xiaowei Chi, Jianhua Yang, and Yu Liu. "A high-energy efficiency static membrane-free zinc–bromine battery enabled by a high concentration hybrid electrolyte." Sustainable Energy & Fuels 6, no. 4 (2022): 1148–55. http://dx.doi.org/10.1039/d1se01749g.
Pełny tekst źródłaLi, Guodong, Wei Chen, Hao Zhang, et al. "Membrane‐Free Zn/MnO 2 Flow Battery for Large‐Scale Energy Storage." Advanced Energy Materials 10, no. 9 (2020): 1902085. http://dx.doi.org/10.1002/aenm.201902085.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Marc Anderson, and Rebeca Marcilla. "Berichtigung: A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes." Angewandte Chemie 130, no. 15 (2018): 3915. http://dx.doi.org/10.1002/ange.201801680.
Pełny tekst źródłaNavalpotro, Paula, Jesus Palma, Marc Anderson, and Rebeca Marcilla. "Corrigendum: A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes." Angewandte Chemie International Edition 57, no. 15 (2018): 3853. http://dx.doi.org/10.1002/anie.201801680.
Pełny tekst źródłaCao, Mingyang, Weiye Bai, Mingqiang Li, Mingyu Jiang, Yanheng Yin, and Ning Wang. "Membrane-free and non-current Zn–Br battery: Using murexide-modified electrolyte." Journal of Power Sources 639 (May 2025): 236669. https://doi.org/10.1016/j.jpowsour.2025.236669.
Pełny tekst źródłaLee, Hun, and Deokwoo Lee. "Composite Membrane Containing Titania Nanofibers for Battery Separators Used in Lithium-Ion Batteries." Membranes 13, no. 5 (2023): 499. http://dx.doi.org/10.3390/membranes13050499.
Pełny tekst źródłaHu, Chi-Chang, Yi-Heng Tu, Yu-Hsiang Yang, and Hung-Yi Huang. "Constructing Membrane-Free Faradaic Deionization Systems with High Capacity and High Rate of Salt Removal/Recovery." ECS Meeting Abstracts MA2024-02, no. 49 (2024): 3494. https://doi.org/10.1149/ma2024-02493494mtgabs.
Pełny tekst źródłaYang, Yuan, Guangyuan Zheng, and Yi Cui. "A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage." Energy & Environmental Science 6, no. 5 (2013): 1552. http://dx.doi.org/10.1039/c3ee00072a.
Pełny tekst źródłaNavalpotro, Paula, Carlos Trujillo, Iciar Montes, et al. "Critical aspects of membrane-free aqueous battery based on two immiscible neutral electrolytes." Energy Storage Materials 26 (April 2020): 400–407. http://dx.doi.org/10.1016/j.ensm.2019.11.011.
Pełny tekst źródłaKarthik, K., and Ramaswamy Murugan. "Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery." Journal of Solid State Electrochemistry 22, no. 10 (2018): 2989–98. http://dx.doi.org/10.1007/s10008-018-4010-3.
Pełny tekst źródłaDang, Hoang, Andrew J. Sellathurai, and Dominik PJ Barz. "An Ion Exchange Membrane-Free, Ultrastable Zinc-Iodine Battery Enabled by Functionalized Graphene Electrodes." ECS Meeting Abstracts MA2023-01, no. 5 (2023): 908. http://dx.doi.org/10.1149/ma2023-015908mtgabs.
Pełny tekst źródłaNguyen, Oanh Hoang, Prathap Iyapazham Vaigunda Suba, Muhammad Shoaib, and Venkataraman Thangadurai. "A Novel, Membrane Free Redox Battery Design Using Organic/Inorganic Redox Pair in Aqueous System." ECS Meeting Abstracts MA2022-02, no. 64 (2022): 2339. http://dx.doi.org/10.1149/ma2022-02642339mtgabs.
Pełny tekst źródłaChai, Jingchao, Amir Lashgari, Andrew E. Eisenhart, Xiao Wang, Thomas L. Beck, and Jianbing “Jimmy” Jiang. "Biphasic, Membrane-Free Zn/Phenothiazine Battery: Effects of Hydrophobicity of Redox Materials on Cyclability." ACS Materials Letters 3, no. 4 (2021): 337–43. http://dx.doi.org/10.1021/acsmaterialslett.1c00061.
Pełny tekst źródłaPuech, Laurent, Christophe Cantau, Philippe Vinatier, Gwenaëlle Toussaint, and Philippe Stevens. "Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium–air battery." Journal of Power Sources 214 (September 2012): 330–36. http://dx.doi.org/10.1016/j.jpowsour.2012.04.064.
Pełny tekst źródłaSenthilkumar, Sirugaloor Thangavel, Santiago E. Ibañez, Paula Navalpotro, et al. "Membrane-free Zn hybrid redox flow battery using water-in-salt aqueous biphasic electrolytes." Journal of Power Sources 608 (July 2024): 234660. http://dx.doi.org/10.1016/j.jpowsour.2024.234660.
Pełny tekst źródłaAlig, Benjamin N., Ramon D. Malheiros, and Kenneth E. Anderson. "The Effect of Housing Environment on Physical Egg Quality of White Egg Layers." Poultry 2, no. 2 (2023): 222–34. http://dx.doi.org/10.3390/poultry2020018.
Pełny tekst źródłaKusumawati, D. H., and T. N. Agustin. "Characteristic of Nanofiber PVA-Graphene Oxide (GO) as Lithium Battery Separator." Journal of Physics: Conference Series 2623, no. 1 (2023): 012008. http://dx.doi.org/10.1088/1742-6596/2623/1/012008.
Pełny tekst źródłaJang, Jung-Kyu, and Tae-Ho Kim. "Fabrication of Tri-Directional Poly(2,5-benzimidazole) Membrane Using Direct Casting for Vanadium Redox Flow Battery." Polymers 15, no. 17 (2023): 3577. http://dx.doi.org/10.3390/polym15173577.
Pełny tekst źródłaAlig, Benjamin N., Ramon D. Malheiros, and Kenneth E. Anderson. "Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems." Animals 13, no. 4 (2023): 716. http://dx.doi.org/10.3390/ani13040716.
Pełny tekst źródłaYan, Xiaoming, Huaqing Zhang, Zhongyue Hu, et al. "Amphoteric-Side-Chain-Functionalized “Ether-Free” Poly(arylene piperidinium) Membrane for Advanced Redox Flow Battery." ACS Applied Materials & Interfaces 11, no. 47 (2019): 44315–24. http://dx.doi.org/10.1021/acsami.9b15872.
Pełny tekst źródłaNavalpotro, Paula, Noemí Sierra, Carlos Trujillo, Iciar Montes, Jesus Palma, and Rebeca Marcilla. "Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes." ACS Applied Materials & Interfaces 10, no. 48 (2018): 41246–56. http://dx.doi.org/10.1021/acsami.8b11581.
Pełny tekst źródłaNavalpotro, Paula, Santiago E. Ibañez, Eduardo Pedraza, and Rebeca Marcilla. "A neutral pH aqueous biphasic system applied to both static and flow membrane-free battery." Energy Storage Materials 56 (February 2023): 403–11. http://dx.doi.org/10.1016/j.ensm.2023.01.033.
Pełny tekst źródłaAsgedom, Yosef Nikodimos, Wei-Nien Su, and Bing Joe Hwang. "Novel Gel Polymer Electrolyte Preparation Method for Anode-Free Lithium Metal Battery." ECS Meeting Abstracts MA2025-01, no. 3 (2025): 194. https://doi.org/10.1149/ma2025-013194mtgabs.
Pełny tekst źródłaLi, Zhen, I.-Chun Chen, Li Cao, Xiaowei Liu, Kuo-Wei Huang, and Zhiping Lai. "Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design." Science 385, no. 6716 (2024): 1438–44. http://dx.doi.org/10.1126/science.adg8487.
Pełny tekst źródłaXie, Guihui, Fujun Cui, Huimin Zhao, et al. "Free-standing COF nanofiber in ion conductive membrane to improve efficiency of vanadium redox flow battery." Journal of Membrane Science 708 (August 2024): 123052. http://dx.doi.org/10.1016/j.memsci.2024.123052.
Pełny tekst źródłaNikodimos, Yosef, Wei-Nien Su, and Bing-Joe Hwang. "Lithium Dendrite Growth Suppression in Anode-Free Lithium Battery Using Bifunctional Electrospun Gel Polymer Electrolyte Membrane." ECS Meeting Abstracts MA2023-01, no. 6 (2023): 998. http://dx.doi.org/10.1149/ma2023-016998mtgabs.
Pełny tekst źródłaKang, Sora, Sang Sun Park, and Misook Kang. "Electrochemical Performance of a Thin Fabric ZnO Anodic Material in a Free Membrane Ni-Zn Battery." Bulletin of the Korean Chemical Society 36, no. 9 (2015): 2394–96. http://dx.doi.org/10.1002/bkcs.10452.
Pełny tekst źródłaZhang, Congli, Zeyu Geng, Ting Meng, et al. "Multi−Functional Gradient Fibrous Membranes Aiming at High Performance for Both Lithium–Sulfur and Zinc–Air Batteries." Electronics 12, no. 4 (2023): 885. http://dx.doi.org/10.3390/electronics12040885.
Pełny tekst źródłaThangadurai, Venkataraman, Oanh Hoang Nguyen, Muhammad Shoaib, and Prathap Iyapazham Vaigunda Suba. "(Invited) Redox Flow Batteries – Exploring Electrolyte Additives and Hybrid Organic/Inorganic Redox Pairs." ECS Meeting Abstracts MA2024-01, no. 1 (2024): 87. http://dx.doi.org/10.1149/ma2024-01187mtgabs.
Pełny tekst źródłaDonateo, Teresa, Antonio Ficarella, and Leonardo Lecce. "Preliminary design of a retrofitted ultralight aircraft with a hybrid electric fuel cell power system." Journal of Physics: Conference Series 2716, no. 1 (2024): 012017. http://dx.doi.org/10.1088/1742-6596/2716/1/012017.
Pełny tekst źródłaRoberts, Edward, Mohammad Rahimi, Asghar Molaei Dehkordi, Fatemeh ShakeriHosseinabad, Maedeh Pahlevaninezhad, and Ashutosh Kumar Singh. "(Invited) Redox Flow Battery Innovation." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 483. http://dx.doi.org/10.1149/ma2022-013483mtgabs.
Pełny tekst źródłaHuang, Wei, Qingli Zou, and Yi‐Chun Lu. "Ion‐Selective Membrane‐Free Dual Sulfur‐Iodine Catholyte for Low‐Cost and High‐Power Flow Battery Applications." Batteries & Supercaps 2, no. 11 (2019): 941–47. http://dx.doi.org/10.1002/batt.201900107.
Pełny tekst źródłaDasarathan, Suriyakumar, Junghwan Sung, Jeong-Won Hong, et al. "Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery." RSC Advances 13, no. 12 (2023): 8299–306. http://dx.doi.org/10.1039/d3ra00349c.
Pełny tekst źródła