Gotowa bibliografia na temat „Memory and power applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Memory and power applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Memory and power applications"
Zhang, Kaiqiang, Dongyang Ou, Congfeng Jiang, Yeliang Qiu, and Longchuan Yan. "Power and Performance Evaluation of Memory-Intensive Applications." Energies 14, no. 14 (2021): 4089. http://dx.doi.org/10.3390/en14144089.
Pełny tekst źródłaKumar, S., M. Santhanalakshmi, and R. Navaneethakrishnan. "Content addressable memory for energy efficient computing applications." Scientific Temper 14, no. 02 (2023): 430–36. http://dx.doi.org/10.58414/scientifictemper.2023.14.2.30.
Pełny tekst źródłaZuo, Ze Yu, Wei Hu, Rui Xin Hu, Heng Xiong, Wen Bin Du, and Xiu Cai. "Efficient Scratchpad Memory Management for Mobile Multimedia Application." Advanced Materials Research 748 (August 2013): 932–35. http://dx.doi.org/10.4028/www.scientific.net/amr.748.932.
Pełny tekst źródłaKumar Lamba, Anil, and Anuradha Konidena. "IoT Applications: Analysis of MTCMOS Cache Memory Architecture in a Processor." Journal of Futuristic Sciences and Applications 2, no. 1 (2019): 24–33. http://dx.doi.org/10.51976/jfsa.211905.
Pełny tekst źródłaTyler, Neil. "Tempo Targets Low-Power Chips for AI Applications." New Electronics 52, no. 13 (2019): 7. http://dx.doi.org/10.12968/s0047-9624(22)61557-8.
Pełny tekst źródłaTatas, K., D. Soudris, and A. Thanailakis. "Memory power optimization of hardware implementations of multimedia applications onto FPGA platforms." Journal of Embedded Computing 1, no. 3 (2005): 353–62. https://doi.org/10.3233/emc-2005-00038.
Pełny tekst źródłaFang, Juan, Jiajia Lu, Mengxuan Wang, and Hui Zhao. "A Performance Conserving Approach for Reducing Memory Power Consumption in Multi-Core Systems." Journal of Circuits, Systems and Computers 28, no. 07 (2019): 1950113. http://dx.doi.org/10.1142/s0218126619501135.
Pełny tekst źródłaBirla, Shilpi. "Variability aware FinFET SRAM cell with improved stability and power for low power applications." Circuit World 45, no. 4 (2019): 196–207. http://dx.doi.org/10.1108/cw-12-2018-0098.
Pełny tekst źródłaMarchal, P., J. I. Gomez, D. Atienza, S. Mamagkakis, and F. Catthoor. "Power aware data and memory management for dynamic applications." IEE Proceedings - Computers and Digital Techniques 152, no. 2 (2005): 224. http://dx.doi.org/10.1049/ip-cdt:20045077.
Pełny tekst źródłaK, Bharathi, and Vijayakumar S. "QCA Design of Encoder for Low Power Memory Applications." International Journal of Electronics and Communication Engineering 3, no. 11 (2016): 13–15. http://dx.doi.org/10.14445/23488549/ijece-v3i11p114.
Pełny tekst źródłaRozprawy doktorskie na temat "Memory and power applications"
Wang, Xin. "Power Efficient Embedded Memory Design for Mobile Video Applications." Thesis, North Dakota State University, 2015. https://hdl.handle.net/10365/27621.
Pełny tekst źródłaSELMO, SIMONE. "Functional analysis of In-based nanowires for low power phase change memory applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/153247.
Pełny tekst źródłaMorrison, Matthew Arthur. "Theory, Synthesis, and Application of Adiabatic and Reversible Logic Circuits For Security Applications." Scholar Commons, 2013. https://scholarcommons.usf.edu/etd/5082.
Pełny tekst źródłaRamclam, Kenneth M. "Low-Power and Robust Level-Shifter with Contention Mitigation for Memory and Standalone Applications." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5555.
Pełny tekst źródłaLai, Farley. "Stream processing optimizations for mobile sensing applications." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5797.
Pełny tekst źródłaMandlekar, Anup Shrikant. "An Application Framework for a Power-Aware Processor Architecture." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34484.
Pełny tekst źródłaCortes, Christoffer, and Adam Krauser. "Android : Resource Consumption in Native and Web Applications." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4681.
Pełny tekst źródłaMugisha, Dieudonne Manzi. "Exploiting Application Behaviors for Resilient Static Random Access Memory Arrays in the Near-Threshold Computing Regime." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4550.
Pełny tekst źródłaMahato, Prabir. "Study and development of resistive memories for flexible electronic applications." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI134.
Pełny tekst źródłaLy, Aliou. "Développement d’un oscillateur paramétrique optique continu intense et à faible bruit pour des applications aux communications quantiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS528/document.
Pełny tekst źródłaKsiążki na temat "Memory and power applications"
Weiss, Donald H. Increasing your memory power. American Management Association, 1986.
Znajdź pełny tekst źródłaCliff, Kellett Michael, ed. High-intensity memory power. Sterling, 1986.
Znajdź pełny tekst źródłaBayne, Stephen B., and Bejoy N. Pushpakaran, eds. Power Semiconductor Technology in Pulsed Power Applications. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-80252-2.
Pełny tekst źródłaSemiconductor, National. Memory applications handbook. National Semiconductor, 1993.
Znajdź pełny tekst źródłaKen, Harsha, and Ober Scot 1946-, eds. PC power: Microcomputer applications. Glencoe/McGraw-Hill, 1991.
Znajdź pełny tekst źródłaEsposito, Anthony. Fluid power with applications. 3rd ed. Regents/Prentice Hall, 1994.
Znajdź pełny tekst źródłaEsposito, Anthony. Fluid power with applications. 4th ed. Prentice Hall, 1997.
Znajdź pełny tekst źródłaEsposito, Anthony. Fluid power with applications. 7th ed. Pearson Prentice Hall, 2009.
Znajdź pełny tekst źródłaFuture Transportation Technology Conference and Exposition (1987 Seattle, Wash.). Smart power: Automotive applications. Society of Automotive Engineers, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Memory and power applications"
Tarasov, Vasily E. "Economic models with power-law memory." In Applications in Engineering, Life and Social Sciences, Part B, edited by Dumitru Bǎleanu and António Mendes Lopes. De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571929-001.
Pełny tekst źródłaEdelman, Mark. "Dynamics of nonlinear systems with power-law memory." In Applications in Physics, Part A, edited by Vasily E. Tarasov. De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571707-005.
Pełny tekst źródłaCorcuera, José Manuel. "Power Variation Analysis of Some Integral Long-Memory Processes." In Stochastic Analysis and Applications. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-70847-6_9.
Pełny tekst źródłaProdromakis, Themis. "Harnessing the Power of the Brain with Memory-resitors." In Circuits and Systems for Biomedical Applications. River Publishers, 2022. http://dx.doi.org/10.1201/9781003337546-3.
Pełny tekst źródłaQiu, Yeliang, Congfeng Jiang, Tiantian Fan, et al. "Power Characterization of Memory Intensive Applications: Analysis and Implications." In Benchmarking, Measuring, and Optimizing. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32813-9_16.
Pełny tekst źródłaChoi, Hong Jun, Dong Oh Son, and Cheol Hong Kim. "Memory Contention Aware Power Management for High Performance GPUs." In Parallel and Distributed Computing, Applications and Technologies. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5907-1_23.
Pełny tekst źródłaCheng, Yao, Chang Xu, Daisuke Mashima, Vrizlynn L. L. Thing, and Yongdong Wu. "PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network." In Advanced Data Mining and Applications. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69179-4_51.
Pełny tekst źródłaYoo, Hoi Jun, and Donghyun Kim. "Embedded Memory Architecture for Low-Power Application Processor." In Integrated Circuits and Systems. Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-88497-4_2.
Pełny tekst źródłaSong, Yong-Ha, and Jun-Bo Yoon. "Micro and Nanoelectromechanical Contact Switches for Logic, Memory, and Power Applications." In Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9990-4_3.
Pełny tekst źródłaEl-Atab, Nazek, Ali K. Okyay, and Ammar Nayfeh. "Two-nanometer Laser Synthesized Si-Nanoparticles for Low Power Memory Applications." In 3D Stacked Chips. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20481-9_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Memory and power applications"
Phan, Ha-Vu, Tan-Hung Pham, Khang B. Tran, Quoc-Thang Phan, Quoc Dung Phan, and Yuan-Kang Wu. "Modified Quantum Long-Short Term Memory with Variational Quantum Circuits for PV Power Forecasting." In 2025 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2025. https://doi.org/10.1109/ias62731.2025.11061559.
Pełny tekst źródłaSwami, Yashu, and T. Senthil Vadivel. "16 Bit Memory and Power Efficient Truncated Booth Multiplier For High Speed Applications/Operations." In 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). IEEE, 2025. https://doi.org/10.1109/icmcsi64620.2025.10883607.
Pełny tekst źródłaDubey, Sagar, Dan Oh, Sam Khalili, et al. "Power Integrity Design of a 56Gb/s Si-Photonic Optical Link for Memory Applications." In 2025 IEEE 75th Electronic Components and Technology Conference (ECTC). IEEE, 2025. https://doi.org/10.1109/ectc51687.2025.00121.
Pełny tekst źródłaChen, Zhiyan, and Libo Dong. "Enhanced Dynamic Interactive Multi-View Memory Network for Utterance-Level Sentiment Recognition." In 2025 IEEE 5th International Conference on Power, Electronics and Computer Applications (ICPECA). IEEE, 2025. https://doi.org/10.1109/icpeca63937.2025.10928284.
Pełny tekst źródłaToka, Erkin Atay, Baris Kuseyri, and Firuzi Keyvan. "Power Factor Enhancement with Variable Flux Memory Motor for Heating, Ventilation, and Air Conditioning Applications." In 2025 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE, 2025. https://doi.org/10.1109/iemdc60492.2025.11061076.
Pełny tekst źródłaPhan, Ha-Vu, Quoc-Thang Phan, Yuan-Kang Wu, and Quoc Dung Phan. "Hybrid Long-Short Term Memory with Variational Quantum Eigensolver for Photovoltaic Power Forecasting: A Novel Approach." In 2025 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2025. https://doi.org/10.1109/ias62731.2025.11061533.
Pełny tekst źródłaZhen, Hongyue, Ziming Lin, Ligang Zhao, Junbo Zhang, Baorong Zhou, and Qinxiong Huang. "Application and Challenges of In-Memory Computing in Power System Simulation." In 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS). IEEE, 2024. http://dx.doi.org/10.1109/iceeps62542.2024.10693073.
Pełny tekst źródłaRoizin, Yakov, Evgeny Pikhay, Vladislav Dayan, and Alexey Heiman. "High Density MTP Logic NVM for Power Management Applications." In 2009 IEEE International Memory Workshop (IMW). IEEE, 2009. http://dx.doi.org/10.1109/imw.2009.5090593.
Pełny tekst źródłaKouznetsov, Igor, Krishnaswamy Ramkumar, Venkatraman Prabhakar, et al. "40 nm Ultralow-Power Charge-Trap Embedded NVM Technology for IoT Applications." In 2018 IEEE International Memory Workshop (IMW). IEEE, 2018. http://dx.doi.org/10.1109/imw.2018.8388777.
Pełny tekst źródłaZhu, Zongwei, Xi Li, Chao Wang, and Xuehai Zhou. "Memory power optimization on different memory address mapping schemas." In 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 2014. http://dx.doi.org/10.1109/rtcsa.2014.6910545.
Pełny tekst źródłaRaporty organizacyjne na temat "Memory and power applications"
Pasupuleti, Murali Krishna. Neuromorphic Nanotech: 2D Materials for Energy-Efficient Edge Computing. National Education Services, 2025. https://doi.org/10.62311/nesx/rr325.
Pełny tekst źródłaPasupuleti, Murali Krishna. Neural Computation and Learning Theory: Expressivity, Dynamics, and Biologically Inspired AI. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv425.
Pełny tekst źródłaMusmanno, Joseph F., Joseph W. Manke, and Jon W. Harris. Processor-in-Memory Applications Assessment. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada386682.
Pełny tekst źródłaAgarwal, Anant, and Anoop Gupta. Memory-Reference Characteristics of Multiprocessor Applications under MACH. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada207318.
Pełny tekst źródłaSchindewolf, M., B. Bihari, J. Gyllenhaal, M. Schulz, A. Wang, and W. Karl. What Scientific Applications can Benefit from Hardware Transactional Memory? Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1044233.
Pełny tekst źródłaBochat, W. M. Atomic Bomb: Memory and its Power on Japanese Pacifism. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada526120.
Pełny tekst źródłaLevy, Scott N., Patrick G. Bridges, Kurt Brian Ferreira, Aidan Patrick Thompson, and Christian Robert Trott. An examination of content similarity within the memory of HPC applications. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1088105.
Pełny tekst źródłaMerritt, Alexander M., and Kevin Thomas Tauke Pedretti. LDRD final report : managing shared memory data distribution in hybrid HPC applications. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1007320.
Pełny tekst źródłaBiryukov, A., D. Dinu, D. Khovratovich, and S. Josefsson. Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work Applications. RFC Editor, 2021. http://dx.doi.org/10.17487/rfc9106.
Pełny tekst źródłaLindemuth, I. R., R. E. Reinovsky, and C. M. Fowler. Megagauss technology and pulsed power applications. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/378770.
Pełny tekst źródła