Gotowa bibliografia na temat „Metals Fatigue”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metals Fatigue”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Metals Fatigue"
Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce i A. Fernández-Canteli. "Mechanical fatigue of metals". Engineering Fracture Mechanics 185 (listopad 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.
Pełny tekst źródłaPolák, Jaroslav, Jiří Man i Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals". Key Engineering Materials 592-593 (listopad 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Pełny tekst źródłaEnomoto, Masatoshi. "Prediction of Fatigue Life for Light Metals and their Welded Metals". Materials Science Forum 794-796 (czerwiec 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.
Pełny tekst źródłaKAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG i Hironobu NISITANI. "Ultrasonic Fatigue Properties of Metals". Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.
Pełny tekst źródłaTROSHCHENKO, V. T. "Fatigue fracture toughness of metals". Fatigue & Fracture of Engineering Materials & Structures 32, nr 4 (kwiecień 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.
Pełny tekst źródłaFonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus i Alfonso Fernández-Canteli. "ICMFM18-Mechanical fatigue of metals". International Journal of Structural Integrity 8, nr 6 (4.12.2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.
Pełny tekst źródłaPineau, André, David L. McDowell, Esteban P. Busso i Stephen D. Antolovich. "Failure of metals II: Fatigue". Acta Materialia 107 (kwiecień 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.
Pełny tekst źródłaVinogradov, A., i S. Hashimoto. "Fatigue of Severely Deformed Metals". Advanced Engineering Materials 5, nr 5 (16.05.2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.
Pełny tekst źródłaTeng, N. J., i T. H. Lin. "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation". Journal of Engineering Materials and Technology 117, nr 4 (1.10.1995): 470–77. http://dx.doi.org/10.1115/1.2804741.
Pełny tekst źródłaLowe, Terry C. "Enhancing Fatigue Properties of Nanostructured Metals and Alloys". Advanced Materials Research 29-30 (listopad 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.
Pełny tekst źródłaRozprawy doktorskie na temat "Metals Fatigue"
Nowicki, Timothy. "Statistical model prediction of fatigue life for diffusion bonded Inconel 600 /". Online version of thesis, 2008. http://hdl.handle.net/1850/7984.
Pełny tekst źródłaFernandes, Paulo Jorge Luso. "Fatigue and fracture of metals in liquid-metal environments". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337963.
Pełny tekst źródłaLunt, William S. "Molecular dynamics simulation of fatigue damage in metals". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FLunt.pdf.
Pełny tekst źródłaErasmus, Daniel Jacobus. "The fatigue life cycle prediction of a light aircraft undercarriage". Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1527.
Pełny tekst źródłaWilliams, Zachary. "Krouse Fatigue for Metals with Elevated Mean Stress". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1597075964521893.
Pełny tekst źródłaRepetto, Eduardo A. Ortiz Michael. "On the fatigue behavior of ductile F.C.C. metals /". Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-01242008-133649.
Pełny tekst źródłaZhao, Tianwen. "Fatigue of aluminum alloy 7075-T651 /". abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3342620.
Pełny tekst źródła"December, 2008." Includes bibliographical references (leaves 76-83). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2009]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Morrissey, Ryan J. "Frequency and mean stress effects in high cycle fatigue of Ti-6A1-4V". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17095.
Pełny tekst źródłaJin, Ohchang. "The characterization of small fatigue crack growth in PH13-8 Mo stainless steel". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19633.
Pełny tekst źródłaGhodratighalati, Mohamad. "Multiscale Modeling of Fatigue and Fracture in Polycrystalline Metals, 3D Printed Metals, and Bio-inspired Materials". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104944.
Pełny tekst źródłaDoctor of Philosophy
The goal of this research is developing a multiscale framework to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. Different computational models are developed for studying rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions and the results will help better maintenance of the railways and increase the safety of trains. The developed model is employed to study the fracture and fatigue behavior in 3D printed metals created by the selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing industries including biomedical, automotive, aerospace, energy, and many others. Since experiments on 3D printed metals are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. Our method for studying the fatigue at the microstructural level of 3D printed alloys can help to create more fatigue and fracture resistant materials. In the last section, we have studied fracture behavior in bio-inspired materials. A fundamental problem in engineering is how to find the design that exhibits the best combination of mechanical properties. Biological materials like bone, nacre, and teeth are constructed from simple building blocks and show a surprising combination of high strength and toughness. By inspiring from these materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired structure compared to its building blocks. Furthermore, an optimization method is implemented into the designing the bio-inspired structures for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure.
Książki na temat "Metals Fatigue"
1954-, Hejwowski Tadeusz, red. Thermal fatigue of metals. New York: M. Dekker, 1991.
Znajdź pełny tekst źródłaSchijve, Jaap. Biaxial Fatigue of Metals. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23606-3.
Pełny tekst źródłaBathias, Claude. Fatigue Limit in Metals. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648704.
Pełny tekst źródłaCorreia, José A. F. O., Abílio M. P. De Jesus, António Augusto Fernandes i Rui Calçada, red. Mechanical Fatigue of Metals. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3.
Pełny tekst źródłaCardona, D. C. Fatigue of brittle metals. Birmingham: University of Birmingham, 1990.
Znajdź pełny tekst źródłaI, Stephens R., i Fuchs H. O. 1907-, red. Metal fatigue in engineering. Wyd. 2. New York: Wiley, 2001.
Znajdź pełny tekst źródłaDang, Van Ky, i Papadopoulos Iōannēs V, red. High-cycle metal fatique: From theory to applications. Wien: Springer, 1999.
Znajdź pełny tekst źródłaJ, Comer Jess, i Handrock James L, red. Fundamentals of metal fatigue analysis. Englewood Cliffs, N.J: Prentice Hall, 1990.
Znajdź pełny tekst źródła1935-, Marsh K. J., i Pook L. P, red. Metal fatigue. Mineola, NY: Dover Publications, 1999.
Znajdź pełny tekst źródłaMilella, Pietro Paolo. Fatigue and Corrosion in Metals. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2336-9.
Pełny tekst źródłaCzęści książek na temat "Metals Fatigue"
Kaesche, Helmut. "Corrosion Fatigue". W Corrosion of Metals, 525–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-96038-3_16.
Pełny tekst źródłaCarlson, R. L., G. A. Kardomateas i J. I. Craig. "Fatigue in Metals". W Solid Mechanics and Its Applications, 19–39. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4252-9_3.
Pełny tekst źródłaMilella, Pietro Paolo. "Fatigue Testing. Fatigue Curve Construction and Fatigue Limit Assessment". W Fatigue and Corrosion in Metals, 431–78. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_10.
Pełny tekst źródłaMilella, Pietro Paolo. "Corrosion Fatigue". W Fatigue and Corrosion in Metals, 767–806. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_16.
Pełny tekst źródłaMilella, Pietro Paolo. "Multiaxial Fatigue". W Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.
Pełny tekst źródłaMilella, Pietro Paolo. "Corrosion Fatigue". W Fatigue and Corrosion in Metals, 885–923. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_20.
Pełny tekst źródłaMilella, Pietro Paolo. "Multiaxial Fatigue". W Fatigue and Corrosion in Metals, 593–636. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_13.
Pełny tekst źródłaBhaduri, Amit. "Fatigue". W Mechanical Properties and Working of Metals and Alloys, 317–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7209-3_8.
Pełny tekst źródłaMilella, Pietro Paolo. "Stress-Based Fatigue Analysis High Cycle Fatigue". W Fatigue and Corrosion in Metals, 245–308. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_5.
Pełny tekst źródłaMilella, Pietro Paolo. "Strain-Based Fatigue Analysis Low Cycle Fatigue". W Fatigue and Corrosion in Metals, 309–63. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Metals Fatigue"
Mamiya, Edgar Nobuo, i José Alexander Araújo. "A Criterion to Predict the Fatigue Strength of Hard Metals under Multiaxial Loading". W SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4065.
Pełny tekst źródłaLuong, Minh Phong. "Infrared thermography of fatigue in metals". W Aerospace Sensing, redaktor Jan K. Eklund. SPIE, 1992. http://dx.doi.org/10.1117/12.58539.
Pełny tekst źródła"The Development of Fatigue Cracks in Metals". W Experimental Mechanics of Solids. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900215-18.
Pełny tekst źródłaLuong, Minh Phong. "Fatigue evaluation of metals using infrared thermography". W Second International Conference on Experimental Mechanics, redaktorzy Fook S. Chau i Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429590.
Pełny tekst źródłaXue, Yibin, Tong Li i Frank Abdi. "Fatigue Damage Initiation Life Prediction for Heterogeneous Metals". W 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1653.
Pełny tekst źródłaKrapez, J. C., D. Pacou i G. Gardette. "Lock-in thermography and fatigue limit of metals". W 2000 Quantitative InfraRed Thermography. QIRT Council, 2000. http://dx.doi.org/10.21611/qirt.2000.051.
Pełny tekst źródłaEwenz, L. "Approach to transferring force-based fatigue curves into stress-related fatigue curves for clinch joints". W Sheet Metal 2023. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902417-18.
Pełny tekst źródłaSan Marchi, Chris, i Brian P. Somerday. "Fatigue Crack Growth of Structural Metals for Hydrogen Service". W ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57701.
Pełny tekst źródłaVshivkov, A., A. Iziumova i O. Plekhov. "Experimental study of thermodynamics propagation fatigue crack in metals". W ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932925.
Pełny tekst źródłaBoyce, Brad, Christopher Barr, Ta Duong, Daniel Bufford, A. Molkeri, Nathan Heckman, David Adams, A. Srivastava, Khalid Hattar i Michael Demkowicz. "Implications of Fatigue-Crack Healing in Nanocrystalline Metals [Slides]". W TMS 2022 Annual Meeting & Exhibition, Anaheim, CA (United States), 27 Feb- 3 Mar 2022. US DOE, 2023. http://dx.doi.org/10.2172/2002234.
Pełny tekst źródłaRaporty organizacyjne na temat "Metals Fatigue"
Farkas, Diana. Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2004. http://dx.doi.org/10.21236/ada438940.
Pełny tekst źródłaHertzberg, Richard W. Fatigue and Fracture Mechanics of Structural Metals, Plastics, and Composites. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1986. http://dx.doi.org/10.21236/ada173064.
Pełny tekst źródłaLewandowski, John J. Microstructural Effects on Fracture and Fatigue of Advanced Refractory Metals and Composites. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2001. http://dx.doi.org/10.21236/ada387898.
Pełny tekst źródłaGuralnick. Hysteresis and Acoustic Emission as Non-Destructive Measures of the Fatigue Process in Metals. Fort Belvoir, VA: Defense Technical Information Center, marzec 1995. http://dx.doi.org/10.21236/ada295602.
Pełny tekst źródłaHackel, L. A., i H.-L. Chen. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter. Office of Scientific and Technical Information (OSTI), sierpień 2003. http://dx.doi.org/10.2172/15004997.
Pełny tekst źródłaMaxey. L51427 ERW Weld Zone Characteristics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1992. http://dx.doi.org/10.55274/r0011187.
Pełny tekst źródłaRiveros, Guillermo, i Hussam Mahmoud. Underwater carbon fiber reinforced polymer (CFRP)–retrofitted steel hydraulic structures (SHS) fatigue cracks. Engineer Research and Development Center (U.S.), marzec 2023. http://dx.doi.org/10.21079/11681/46588.
Pełny tekst źródłaBi, Yunpeng, Xi Li, Huixin Yan, Xiaomei Zhang, Hongyi Guan, Haiyu Zhu, Tingwei Ding i Bailin Song. Acupoint massage for chronic fatigue syndrome:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, kwiecień 2023. http://dx.doi.org/10.37766/inplasy2023.4.0083.
Pełny tekst źródłaRosenfeld i Kiefner. L52270 Basics of Metal Fatigue in Natural Gas Pipeline Systems - A Primer for Gas Pipeline Operators. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2004. http://dx.doi.org/10.55274/r0010154.
Pełny tekst źródłaWang, Yanli, Peijun Hou i Sam Sham. Report on FY 2020 creep, fatigue and creep fatigue testing of Alloy 709 base metal at ORNL. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1671410.
Pełny tekst źródła