Gotowa bibliografia na temat „Microorganisms disease”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microorganisms disease”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microorganisms disease"
Martin, Clémence, Pierre-Régis Burgel, Patricia Lepage, Claire Andréjak, Jacques de Blic, Arnaud Bourdin, Jacques Brouard i in. "Host–microbe interactions in distal airways: relevance to chronic airway diseases". European Respiratory Review 24, nr 135 (28.02.2015): 78–91. http://dx.doi.org/10.1183/09059180.00011614.
Pełny tekst źródłaKeren, David F., i William O. Dobbins. "Microorganisms and Whipple's disease". Gastroenterology 91, nr 6 (grudzień 1986): 1580–81. http://dx.doi.org/10.1016/0016-5085(86)90235-0.
Pełny tekst źródłaGorbach, Sherwood L. "MICROORGANISMS AND INFLAMMATORY BOWEL DISEASE". Infectious Diseases in Clinical Practice 4, nr 5 (wrzesień 1995): 365–67. http://dx.doi.org/10.1097/00019048-199509000-00011.
Pełny tekst źródłaSeo, Dong-Oh, i David M. Holtzman. "Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer’s Disease". Journals of Gerontology: Series A 75, nr 7 (18.11.2019): 1232–41. http://dx.doi.org/10.1093/gerona/glz262.
Pełny tekst źródłaGoldfarb, David S. "Microorganisms and Calcium Oxalate Stone Disease". Nephron Physiology 98, nr 2 (2004): p48—p54. http://dx.doi.org/10.1159/000080264.
Pełny tekst źródłaLatifi, Alireza. "Reviewing the Effects of Miltefosine and Suggesting It for the Treatment of Coronavirus Disease (COVID-19)". Infectious Diseases: Research and Treatment 13 (styczeń 2020): 117863372097748. http://dx.doi.org/10.1177/1178633720977488.
Pełny tekst źródłaWang, Di, Yan Cui, Yuxuan Cao, Yuehan He i Hui Chen. "Human Microbe-Disease Association Prediction by a Novel Double-Ended Random Walk with Restart". BioMed Research International 2020 (11.08.2020): 1–8. http://dx.doi.org/10.1155/2020/3978702.
Pełny tekst źródłaSoenartiningsih, Soenartiningsih, Nurasiah Djaenuddin i M. Sujak Saenong. "Efektivitas Trichoderma sp. dan Gliocladium sp. sebagai Agen Biokontrol Hayati Penyakit Busuk Pelepah Daun pada Jagung". Jurnal Penelitian Pertanian Tanaman Pangan 33, nr 2 (28.08.2014): 129. http://dx.doi.org/10.21082/jpptp.v33n2.2014.p129-135.
Pełny tekst źródłaGorobets, S. V. "Potential producers of biogenic magnetic nanoparticles among disease-producing microorganisms of the brain". Functional materials 24, nr 3 (29.09.2017): 005–404. http://dx.doi.org/10.15407/fm24.03.400.
Pełny tekst źródłaSteindel, Steven J., i Marianne K. Simon. "Characterization of Microorganism Identification in the United States in 1996". Archives of Pathology & Laboratory Medicine 125, nr 7 (1.07.2001): 913–20. http://dx.doi.org/10.5858/2001-125-0913-comiit.
Pełny tekst źródłaRozprawy doktorskie na temat "Microorganisms disease"
Cotter, Sheena C. "Trade-offs in insect disease resistance". Thesis, University of Stirling, 2002. http://hdl.handle.net/1893/26688.
Pełny tekst źródłaMak, Yun-lok Raymond. "Profile changes of putative periodontal pathogens after non-surgical periodontal treatment". Click to view the E-thesis via HKUTO, 2002. http://sunzi.lib.hku.hk/hkuto/record/B31954236.
Pełny tekst źródłaMak, Yun-lok Raymond, i 麥潤樂. "Profile changes of putative periodontal pathogens after non-surgical periodontal treatment". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31954236.
Pełny tekst źródłaO'Connor, Matthew. "Ruminant prion disease detection and characterisation using protein misfolding cyclic amplification". Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41599/.
Pełny tekst źródłaWinterer, Juliette. "The ecology and evolution of plant defense, herbivore tolerance, and disease virulence /". Thesis, Connect to this title online; UW restricted, 1995. http://hdl.handle.net/1773/5241.
Pełny tekst źródłaGunasekera, Thusitha Senadheera. "Effects of UV-B (290-320 nm) radiation on microorganisms on the leaf surface". Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318829.
Pełny tekst źródłaBaxter, Esther. "Epidemiological and aetiological aspects of diarrhoeal disease in the Eastern Cape". Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1004106.
Pełny tekst źródłaHutchins, John David. "Antagonism of the stem rot pathogen (Sclerotina sclerotiorum) by microorganisms from oilseed rape flowers : prospects for biological control". Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281747.
Pełny tekst źródłaMoyo, Providence. "The role of arthropods in the dispersal of trunk disease pathogens associated with Petri disease and Esca". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80224.
Pełny tekst źródłaENGLISH ABSTRACT: Petri disease and esca are devastating grapevine trunk diseases and compromise the sustainability of viticulture world-wide. Despite being extensively studied, knowledge of inoculum sources and mechanisms of spread of the causal pathogens is limited. Arthropods have been suspected to play a role in the spread of Petri disease and esca pathogens. However, little information is known about the extent to which arthropods are associated with these pathogens. This study aimed to determine whether arthropods occurring within or on declining grapevines, are associated with trunk disease pathogens and to identify arthropods associated with pruning wounds. The potential of selected arthropods to act as vectors of trunk disease pathogens was also investigated. Two vineyards exhibiting grapevine trunk disease infections were sampled weekly for two years for collection of arthropods. Arthropods were collected using pruning wound traps, visual searches as well as trunk and cordon traps. Fungal spores from surfaces of arthropods were collected in water. Samples were subjected to nested PCR using primers Pm1/Pm2 and Pch1/Pch2 to verify the presence of Phaeoacremonium spp. and Phaeomoniella chlamydospora, respectively. Water samples were also cultured and grapevine trunk disease pathogens obtained were identified by sequencing the internal transcribed spacers 1 and 2 and the 5.8S rRNA gene or the partial beta-tubulin gene. A total of 10 875 arthropod individuals, belonging to more than 31 families, were collected from declining grapevines. The most abundant arthropods included millipedes, ants, spiders and beetles. Portuguese millipedes and cocktail ants were associated with fresh grapevine pruning wounds. Thirty-three percent of the 5677 water samples analysed, contained propagules of pathogens associated with Petri disease and esca. Of these, 37 % were recovered from millipedes, 22 % from cocktail ants, 15 % from spiders and 10 % from beetles. All the major groups of grapevine trunk diseases were detected on the arthropods. Phaeoacremonium species were detected in 1242 samples while Phaeomoniella chlamydospora was identified from 855 samples. Other fungi isolated included members of the Botryosphaeriaceae, Diatrypaceae and Diaporthales. The potential of grapevine sap as a food source for Portuguese millipedes and cocktail ants was investigated, in vitro. Millipede individuals were offered a choice between water and grapevine sap while ants in nests were presented with grapevine sap, tuna and water and monitored for ingestion of sap. Both taxa preferred grapevine sap over the other food items, indicating close association with pruning wounds. Subsequently, the ability of both taxa to transmit a DsRed-transformed Phaeomoniella chlamydospora isolate to fresh pruning wounds of canes in polystyrene strips, floating in water, and potted vines was tested. Arthropods were exposed to the fungus for 24 hours and transferred to the base of the plants and canes and were removed after three days. Isolations after a month revealed that millipedes and ants were capable of transmitting the fungus onto wounds and cause infection. Millipede faecal pellets were also evaluated as potential sources of inoculum. Millipedes were fed on Phaeomoniella chlamydospora for 24 hours, surface sterilised and allowed to defaecate in sterile Petri dishes overnight. Faecal material was collected, macerated in water and plated onto potato dextrose agar. Propagules of Phaeomoniella chlamydospora survived passage through the gut of millipedes and were passed out in a viable state to form colonies of Phaeomoniella chlamydospora. This study concludes that a wide variety of arthropods can be a source of inoculum of trunk diseases in vineyards. The results of the dissemination trial provides evidence that millipedes and ants are able to disseminate and infect vines with Phaeomoniella chlamydospora. It is therefore, highly likely that other grapevine trunk disease pathogens are transmitted in the same manner. This knowledge highlights the need for control of certain arthropods to be taken into consideration when managing grapevine trunk disease pathogens.
AFRIKAANSE OPSOMMING: Petri siekte en esca is verwoestende wingerd stamsiektes en verhinder die volhoubaarheid van wingerdproduksie wêreldwyd. Hierdie siektes is al intensief bestudeer, maar kennis rakende die inokulum bronne en meganismes van verspreiding van die veroorsakende patogene is beperk. Arthropoda is al vermoed om ‘n rol te speel in die verspreiding van Petri siekte en esca patogene, maar weinig informasie is bekend oor die mate waartoe arthropoda geassosieer is met die patogene. Hierdie studie het ten doel gestel om die arthropoda wat op of in wingerdstokke wat terugsterf voorkom te identifiseer en te bepaal watter van die arthropoda geassosieer is met stamsiekte patogene. Daar is ook ten doel gestel om die arthropoda wat geassosieer is met vars snoeiwonde te identifiseer en ook die moontlike vektor status van die stamsiekte patogene deur arthropoda. Arthropoda is weekliks vir twee jaar gekollekteer vanaf twee wingerde met stamsiekte infeksies. Snoeiwond lokvalle, visuele soektogte en stam- en kordon lokvalle was gebruik om arthropoda te vang. Swamspore van die oppervlak van die arthropoda is afgewas met water. Van hierdie water monsters is gebruik om dubbelvoudige polimerase ketting reaksies (PKR) te doen met die inleiers Pm1/Pm2 en Pch1/Pch2 om vir die teenwoordigheid van Phaeoacremonium spp. en Phaeomoniella chlamydospora onderskeidelik te toets. Die oorblywende water monster is gekweek op medium om die swamme teenwoordig te bepaal. Die wingerd stamsiekte patogene is verder geidentifiseer deur die DNS volgordes te bepaal van die interne getranskribeerde spasies 1 en 2 en die 5.8S rRNS geen of ‘n gedeelte van die beta-tubulien geen. In totaal is 10 875 arthropoda, wat behoort tot 31 families, gekollekteer vanaf wingerde wat terugsterf. Die mees algemene arthropoda was duisendpote, miere, spinnekoppe en kewers. Die Portugese duisendpote en die wipstert mier is geassosieer met vars wingerd snoeiwonde. Van die 5677 water monsters wat geanaliseer is, het 33% propagules van die Petri siekte of esca patogene gehad. Van hierdie was 37 % afkomstig vanaf duisendpote, 22 % van wipstert miere, 15 % van spinnekoppe en 10 % van kewers. Al die hoofgroepe van wingerd stampatogene is opgespoor op die arthropoda. Phaeoacremonium species is opgespoor in 1242 monsters en Phaeomoniella chlamydospora is gevind in 855 monsters. Ander swamme wat ook geisoleer is sluit lede van die Botryosphaeriaceae, Diatrypaceae en Diaporthales in. Die potensiaal van wingerdsap as ‘n bron van voedsel vir Portugese duisendpote en wipstert miere is in vitro ondersoek. Duisendpoot invidue is ‘n keuse gegee tussen water en wingerd sap terwyl mierneste ‘n keuse gehad het tussen water, wingerd sap en tuna. Die duisendpote en miere is gemonitor vir die inname van wingerdsap in die teenwoordigheid van die ander bronne. Beide die duisendpote en miere het wingerdsap verkies wat aandui dat hulle ‘n noue assosiasie met wingerd snoeiwonde het. Vervolgens is beide taksons getoets vir hul vermoë om ‘n DsRooi-getransformeerde Phaeomoniella chlamydospora isolaat te vektor na vars snoeiwonde op lote gemonteer op polistireen stroke wat in water dryf en op wingerd plante in potte. Die duisendpote en miere is blootgestel aan die swam vir 24 uur en oorgedra na die basis van die plante en lote en is weer verwyder na drie dae. Na ‘n maand is isolasies gedoen wat gewys het dat die duisendpote en miere die swam suksesvol kon oordra na die snoeiwonde en infeksie veroorsaak. Duisendpoot uitwerpsels is geëvalueer vir die potensiaal as inokulum bron. Duisendpote het gevoed op Phaeomoniella chlamydospora vir 24 uur, daarna oppervlakkig gesteriliseer en toegelaat om oornag uitwerpsels te maak in steriele Petri bakkies. Uitwerpsels was gekollekteer, fyngemaak in water en op aartappel dekstrose agar uitgeplaat. Propagules van Phaeomoniella chlamydospora het die verteringskanaal van die duisendpote oorleef en het tipiese kolonies op die agar gevorm. Hierdie studie het vasgestel dat ‘n verskeidenheid van arthropoda ‘n bron van inokulum van stamsiektes in wingerd kan wees. Die resultate van die vektor proewe het gewys dat duisendpote en miere die vermoë het om Phaeomoniella chlamydospora te versprei na snoeiwonde wat die swam dan suksesvol geinfekteer het. Dit is daarom hoogs waarskynlik dat van die ander wingerd stamsiekte patogene ook versprei kan word op dieselfde manier. Hierdie kennis demonstreer dat die beheer van spesifieke arthropoda in ag geneem moet word in die bestuur van wingerd stamsiektes.
Winetech, Agricultural Research Council of South Africa and NRF for financial support
Sweet, Simon Paul. "Adherence, aggregation and hydrophobicity of oral bacteria : with particular reference to microorganisms implicated in periodontal disease". Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236908.
Pełny tekst źródłaKsiążki na temat "Microorganisms disease"
Susan, Wells, red. Microorganisms, biotechnology and disease. Cambridge: Cambridge University Press, 1991.
Znajdź pełny tekst źródłaWater microbiology: Types, analyses and disease-causing microorganisms. New York: Nova Science Publishers, 2010.
Znajdź pełny tekst źródłaWestcott, Cynthia. Westcott's plant disease handbook. Wyd. 5. New York: Van Nostrand Reinhold, 1990.
Znajdź pełny tekst źródłaPlant disease control: Principles and practice. New York: J. Wiley, 1993.
Znajdź pełny tekst źródłaChaube, Hriday S. Plant disease management: Principles and practice. Boca Raton: CRC Press, 1991.
Znajdź pełny tekst źródłaS, Singh Uma, red. Plant disease management: Principles and practices. Boca Raton, Fla: CRC Press, 1991.
Znajdź pełny tekst źródłaMolecular biology in plant pathogenesis and disease management. [Berlin?]: Springer, 2008.
Znajdź pełny tekst źródłaNarayanasamy, P. Plant pathogen detection and disease diagnosis. Wyd. 2. New York: M. Dekker, 2001.
Znajdź pełny tekst źródłaNarayanasamy, P. Plant pathogen detection and disease diagnosis. New York: Marcel Dekker, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Microorganisms disease"
Brockhausen, Inka, i William Kuhns. "Microorganisms". W Glycoproteins and Human Disease, 141–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-21960-7_17.
Pełny tekst źródłaCutler, Gregg J. "Microorganisms and Disease". W Commercial Chicken Meat and Egg Production, 433–42. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0811-3_23.
Pełny tekst źródłaGould, Dinah, i Chris Brooker. "Microorganisms and Disease". W Infection Prevention and Control, 3–30. London: Macmillan Education UK, 2008. http://dx.doi.org/10.1007/978-1-137-04592-8_1.
Pełny tekst źródłaMuñoz, Melissa, Elizabeth Cieniewicz i James E. Faust. "Diseases and disease management." W Cut flowers and foliages, 258–315. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247602.0006.
Pełny tekst źródłaGompf, Sandra G., Jordan Lewis, Eknath Naik i Kaley Tash. "The Infectious Disease Physician and Microbial Bioterrorism". W Microorganisms and Bioterrorism, 31–38. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/0-387-28159-2_3.
Pełny tekst źródłaKovacs, Amir, i Uri Gophna. "Intestinal Microbiota and Intestinal Disease: Inflammatory Bowel Diseases". W Beneficial Microorganisms in Multicellular Life Forms, 223–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21680-0_16.
Pełny tekst źródłaPatibanda, A. K., i M. Ranganathswamy. "Effect of Agrichemicals on Biocontrol Agents of Plant Disease Control". W Microorganisms for Sustainability, 1–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7146-1_1.
Pełny tekst źródłaCytryn, Eddie, i Max Kolton. "Microbial Protection Against Plant Disease". W Beneficial Microorganisms in Multicellular Life Forms, 123–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21680-0_8.
Pełny tekst źródłaBachrach, Gilad, Marina Faerman, Ofir Ginesin, Amir Eini, Asaf Sol i Shunit Coppenhagen-Glazer. "Oral Microbes in Health and Disease". W Beneficial Microorganisms in Multicellular Life Forms, 189–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21680-0_13.
Pełny tekst źródłaLund, Barbara M. "Properties of Microorganisms that Cause Foodborne Disease". W The Microbiological Safety of Food in Healthcare Settings, 12–233. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470697757.ch2.
Pełny tekst źródłaStreszczenia konferencji na temat "Microorganisms disease"
Özdemir, Halil, Nihan Yildiz, Bilge Aldemir Kocabaş, Tuğba Erat, Aysun Yahşi, Figen Doğu, Ercan Tutar, Erdal Ince i Ergin Çiftçi. "P271 Underlying disease and causative microorganisms of recurrent pneumonia in children: 13-year study in a university hospital". W 8th Europaediatrics Congress jointly held with, The 13th National Congress of Romanian Pediatrics Society, 7–10 June 2017, Palace of Parliament, Romania, Paediatrics building bridges across Europe. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2017. http://dx.doi.org/10.1136/archdischild-2017-313273.359.
Pełny tekst źródłaKostromycheva, E. V., i N. E. Pavlovskaya. "THE GORDDETINNYI BIOLOGICAL MEANS OF PROTECTION OF PLANTS FROM DISEASE WRITERS". W The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-604-607.
Pełny tekst źródłaMikhailouskaya, N. A., D. V. Voitka, E. K. Yuzefovich i T. B. Barashenko. "Effect of three-component microbial inoculant on winter rye and spring barley yields". W РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.17.
Pełny tekst źródłaNovikova, I. I., E. V. Popova, L. E. Kolesnikov i Yu R. Kolesnikova. "Influence of biologicals on photosynthetic pigments in wheat leaves". W 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.185.
Pełny tekst źródłaMiller, T. V., S. S. Dikunina i E. P. Kotelnikova. "ANALYSIS OF ANTIBACTERIAL PROPERTIES CHELIDONIUM AND YODOPYRON TINCTURES". W "International Scientific and Practical Conference" THEORY AND PRACTICE OF VETERINARY PHARMACY, ECOLOGY AND TOXICOLOGY IN AIC ", dedicated to the centenary of the Department of Pharmacology and Toxicology, SPbSUVM. FSBEI HE St. Petersburg SUVM, 2021. http://dx.doi.org/10.52419/3006-2021-2-167-168.
Pełny tekst źródłaNunez, Silvia C., Rosane B. Soares, Walter Miyakawa, Ricardo S. Navarro, Alessandra Baptista i Martha S. Ribeiro. "Photodynamic therapy to destroy pneumonia associated microorganisms using external irradiation source". W Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, redaktor Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2290764.
Pełny tekst źródłaFang, Yanyan, Tianhong Dai i Raquel Ferrer-Espada. "Antimicrobial blue light inactivation of biofilms formed by clinical isolates of multidrug-resistant microorganisms". W Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, redaktor Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2288520.
Pełny tekst źródłaLeite, Ilaiáli S., Mariana C. Geralde, Ana C. Salina, Alexandra I. Medeiros, Cristina Kurachi, Vanderlei S. Bagnato i Natalia M. Inada. "Photodynamic inactivation of microorganisms which cause pulmonary diseases with infrared light: anin vitrostudy". W SPIE BiOS, redaktorzy Melissa J. Suter, Stephen Lam, Matthew Brenner, Guillermo J. Tearney i Thomas D. Wang. SPIE, 2014. http://dx.doi.org/10.1117/12.2039300.
Pełny tekst źródłaEgovtseva, A. Yu, i T. N. Melnichuk. "The influence of microbial preparations and farming systems on the structure of the microbocenosis of the rhizosphere of Triticum aestivum L." W РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.09.
Pełny tekst źródłaKuznetsova, V. A. "The joint use of strains of microorganisms and natural growth regulators to increase soy resistance to diseases". W 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.148.
Pełny tekst źródła