Rozprawy doktorskie na temat „Microscopie électronique – Tomographie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Microscopie électronique – Tomographie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Florea, Lenuta Ileana. "Tomographie électronique de nano-objets". Strasbourg, 2011. http://www.theses.fr/2011STRA6234.
Pełny tekst źródłaIn the general frame of studying nanomaterials, this thesis is devoted to the exploration of the various electron microscopy modes that allow tomographie recording. These recording modes range from the parallel bright field mode to the bright and dark field annular scanning modes. Filtered imaging as well as low temperature recording have been explored in depth. Strong attention has been paid to the determination of the optimized parameters and procedures that must be used in each mode according to the nature of the sample under study and ta the nature of the properties to be characterized. Lt was shown that a synergy could be obtained from the concomitant use of other microscopy modes with the tomographie ones. The 3D reconstruction of nano-objects allowed reaching very rich descriptions of the objects, up to the point of quantitatively measuring parameters otherwise not reachable, such as porosities or specifie surfaces. Because of this ability, various materials of interest in the fields of catalysis have been studied, carbon based materials: Sic, doped carbon nano-tubes; isolated or self-organized nano-particles: CeO2 Pt; core-shell nano-particles: Au-Ag. The use of filtered imaging for reconstructing 3D images of nano-objects paved the way for the chemical analysis of nano-objects with a 3D chemical resolution of the order of 5nm
Ibrahim, Rana. "Caractérisation de structures centriolaires par tomographie électronique et cryo-Microscopie Electronique à Transmission". Paris 6, 2008. http://www.theses.fr/2008PA066315.
Pełny tekst źródłaMessaoudi, Cédric. "Développements en tomographie électronique et application à l'étude du centrosome". Paris 6, 2006. http://www.theses.fr/2006PA066499.
Pełny tekst źródłaMichels, Yves. "Reconstruction tomographique d'objets déformables pour la cryo-microscopie électronique à particules isolées". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD031/document.
Pełny tekst źródłaSingle particle cryo-electron microscopy is a technique that allows to estimate the 3D structure of biological complex. The construction of the 3D volume is performed by computerized tomography applied on a set of projection images from transmission electron microscope. Existing tomographic reconstructionalgorithms allow us to visualize molecular structure with a resolution around one angstrom. However the resolution is degraded when the molecules are deformable. This thesis contributes to the development of signal processing method in order to take into account the deformation information of the observed object for the ab initio tomographic reconstruction. The main contributions of this thesis are the estimation of projection parameters based on non-linear dimensionreduction, the false edges detection in neighborhood graphs to improve noise robustness of dimension reduction methods, and tomographic reconstruction based on a parametric model of the volume
Guesdon, Audrey. "Mécanismes moléculaires impliqués dans la liaison des +TIPs aux microtubules". Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S196/document.
Pełny tekst źródłaMicrotubules (MTs) are highly dynamic cytoskeleton polymers, involved in many cellular processes, including cell division and intracellular transport. Their dynamic behavior is regulated by numerous factors, such as +TIPs that preferentially target MT growing ends
Koneti, Siddardha. "In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI123/document.
Pełny tekst źródłaIn the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials
Siksou, Léa. "Architecture tridimensionnelle du bouton présynaptique". Paris 6, 2010. http://www.theses.fr/2010PA066242.
Pełny tekst źródłaLe, Bihan Olivier. "Etude par microscopie électronique des mécanismes d'action de vecteurs synthétiques pour le transfert de gènes". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13972/document.
Pełny tekst źródłaThe vast majority of clinical trials of gene transfer in vivo use viral vectors. Although they are effective, they induce immunogenic, toxic or mutagenic risks. Due to their high modularity and low toxicity, synthetic vectors (non viral), represent a promising alternative despite their lack of effectiveness. The major objective of this work was to understand the mechanism of gene transfer using two prototypic synthetic vectors, in the context of a rational design of new vectors. We studied on cultured cells, the mechanism of action of two cationic lipids; BGTC (bis(guanidinium)-tren-cholesterol) and DOSP (DiOleylamine A-Succinyl-Paromomycine) formulated with plasmid DNA (lipoplexes) which are in vitro efficient vectors. We have been able to visualize by electron microscopy, their intracellular pathways, their structural alterations and their endosomal escape, the latter being a key step in the process of gene transfer. The unambiguous identification of lipoplexes throughout their intracellular trafficking has been made possible thanks to the labelling of DNA by core-shell silica nanoparticles with an electron dense maghemite core (Fe2O3). The labeling strategy has also been applied to study the mechanism of action of a nonionic block copolymer (P188 or Lutrol). Interestingly, these synthetic vectors have an in vivo transfection efficiency in mice lung and muscle tissue while they are totally inefficient in vitro. We have shown that Lutrol induces an increase of DNA internalization into cells and fails to trigger endosomal escape, which would explain the lack of in vitro efficacy. These findings suggest that the in vivo mechanism of action of Lutrol would involve other internalization pathways
Letellier, Laurence. "Etude des joints de grains et interphases dans les superalliages Astroloy par microscopie électronique et tomographie atomique". Rouen, 1994. http://www.theses.fr/1994ROUES067.
Pełny tekst źródłaLottin, Delphine. "Dimensions fractales, morphologie et caractéristiques dimensionnelles 2D et 3D d'agrégats de nanoparticules de suie aéronautique : Etude par microscopie électronique en transmission et tomographie électronique". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4012/document.
Pełny tekst źródłaSoot aggregates emitted by aircraft engines' combustion processes are involved in the modification of the global radiative budget and the air quality. The knowledge of their physical and chemical characteristics is a prerequisite to any evaluation of the way they may act in the atmospheric physical and chemical processes and their impact on the environment and public health. In this context, our study aims at determining the size and morphological characteristics of aircraft soot aggregates on the basis of experimental measurements by transmission electron microscopy (TEM) and electron tomography.We have acquired TEM pictures of soot aggregates emitted by aircraft engines. We have established a method to characterize the morphology of these aggregates by determining their elongation, their compacity and the tortuosity of their edge. This method is based on the analysis of their TEM projection. Besides, we have developed a software to process and analyse TEM pictures. It allows to reconstruct aggregates from their projections and to determine their size and morphological characteristics. Our results have lead us to study the validity of the relationships linking the 2D and 3D microphysical characteristics presented in the literature and to suggest new ones for the studied aggregates.These results constitute the first 3D morphological and size characterizations of aircraft soot aggregates using TEM and electron tomography. They highlight the fact that the morphological properties of these aggregates do not fulfil the hypotheses required for the use of the collective method to determine the mass fractal dimension
Sorel, Julien. "Tomographie électronique analytique : Automatisation du traitement de données et application aux nano-dispositifs 3D en micro-électronique". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI078.
Pełny tekst źródłaThe aim of this thesis is to automate the process of hyperspectral analysis for analytical electron tomography applied to nanodevices. The work presented here is focused on datasets obtained by energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDX). STEM-EDX tomography has benefited greatly from recent developments in electron sources such as the ‘X’-FEG (Field Emission Gun), and multiple X-ray detector systems such as the Super-X, incorporating four SSD (Silicon Drift Detectors) detectors. The technique remains however very time-consuming, and low X-ray count rates are necessary to minimize the total acquisition time and avoid beam damage during the experiment. In addition, tomographic stacks of STEM-EDX datacubes, acquired at different tilt angles, are too large to be analyzed by commercial software packages in an optimal way. In order to automate this process, we developed a code based on Hyperspy, a Python library for multidimensional data analysis. Multivariate statistical analysis techniques were employed to optimize and automate the denoising, the energy calibration and the separation of overlapping X-ray lines, with the aim to achieve quantitative, chemically sensitive volumes. Moreover, a compressed sensing based algorithm was employed to achieve high fidelity reconstructions with undersampled tomographic datasets. The code developed during this thesis was used for the 3D chemical analysis of four microelectronic nanostructures: FinFET, HEMT and GAA transistors, and a GeTe thin film for memory device applications. The samples were prepared in a needle shape using a focused ion beam, and the data acquisitions were performed using a Titan Themis microscope equipped with a super-X EDX detector system. It is shown that the code yields 3D morphological and chemical information with high accuracy and fidelity. Ways to improve the current methodology are discussed, with future efforts aiming at developing a package dedicated to analytical electron tomography
Melinte, Georgian. "Advanced 3D and in-situ TEM approaches applied to carbon-based and zeolitic nanomaterials". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE009/document.
Pełny tekst źródłaIn this thesis, advanced Transmission Electron Microscopy (TEM) techniques are used to characterize and fabricate new nanomaterials with applications in nanoelectronics and catalysis. Three types of functionalized materials are investigated: nanopatterned few-layer graphene (FLG), carbon nanotubes(CNTs) and mesoporous zeolites. The nanopatterning process of FLG flakes by iron nanoparticles (NPs) is studied using an approach combining electron tomography (ET) and environmental TEM. The role of the nanoparticle faceting and of the FLG topographic parameters has been quantitatively determined leading to the first determination of the operating mechanism of the patterning process. The mass transfer of metallic-based NPs between two carbon nanostructures was studied as well in real-time by using a TEMSTMholder. The protocol of controlling the mass transfer, the chemical and structural transformations of the NPs, the growth mechanism of the new NPs and other related phenomena were carefully investigated.The last part deals with the low-dose ET investigation of the porosity induced in two classes of zeolites,ZSM-5 and zeolite Y, by an innovative fluoride-based chemical treatment
Dufond, Maxime. "Fonctionnalisation de photoélectrodes nanostructurées par atomic layer deposition pour la photodissociation de l’eau". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0376.
Pełny tekst źródłaThe development of low-cost and green production of dihydrogen is required due to the rapid development of technologies using this fuel. In this context, water-photosplitting using semi-conductive materials immersed in an aqueous electrolyte is a leading approach. This work focuses on the fabrication, physico-chemical characterization as well as photoelectrochemical study of the photoanode. Silicon can be used due to its appropriate electronic properties well suitable for water oxidation. Unfortunately, it suffers from major drawbacks as a high reflectivity and unstability in alcaline media. The strategy is to combine the Si surface structuring (decrease of the reflectivity, increase of the active area and orthogonalization of the paths of absorbed photon and photogenerated carriers) with the coating using of a protective film and a co-catalyst by Atomic Layer Deposition (ALD). This approach leads to the synthesis and the study of the complex, stable and efficient systems for water photooxidation: n-Si/TiO2/Ni et n-Si/Fe2O3/IrO2/TiO2. Functionalization has been performed exclusively by ALD with a near perfect control of both thickness and chemical composition of the layers. Different structures have been used and compared to try to highlight a structure/properties relation (macroporous, nanospikes and pilars)
Ihiawakrim, Dris. "Etude par les techniques avancées de microscopie électronique en transmission de matériaux fragiles". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE005/document.
Pełny tekst źródłaThe present manuscript shows the importance of methodological and technical development to identify and to unblock locks preventing the analysis of hybrid and complex materials that undergo degradation under electron beam irradiation. We have shown that beam-induced damage to the sample only appears above some specific threshold of current density. Such a threshold depends on the nature of the material and on its morphological and structural characteristics. These developments in synergy with the use of Cryo-EM, allowed us to expose the architecture of carbon-based hybrid materials, measure the variation of the lamellar distance in a perovskite according to the molecular spacer and to the positioning of the metal, identify the interactions at the interface between two molecular crystals, and the 3D quantification of the functionalization within a MOF. Lastly, we brought to light the processes of nucleation and growth of iron oxide by in-situ liquid phase TEM
Steciuk, Gwladys. "Application de la précession des électrons en mode tomographie à l’étude de phases apériodiques et de films minces d’oxyde". Caen, 2016. https://tel.archives-ouvertes.fr/tel-01676934.
Pełny tekst źródłaThe advancement in electron crystallography techniques allows today to face new challenges in terms of structural analyzes. Particularly, this work uses the precession electron diffraction tomography method (PEDT) which is a procedure similar to that of the rotating crystal X-ray diffraction and consistent with crystals of a few tens of nanometers. The first part concerns the study of structural and dielectric properties (ferroelectric relaxor type) of a new family of modulated incommensurate phases derived to Aurivillius phases. A structural model could be established by PEDT and confirmed by neutron powder diffraction to the series of ABi7Nb5O24 compounds (A = Ba, Sr, Ca, Pb). The crystallochemical analysis of these new materials was then used to extend the family to other compositions in both BiO1,5-NbO2,5-BaO and BiO1,5-NbO2,5-WO3 systems. If the first part attests the power of PEDT data analysis to solve complex structures within the kinematic approximation, reliable refinement of the resulting model is problematic. In the second part of this thesis, a new refinement procedure from PEDT data involving the dynamic theory of diffraction is presented. First thoroughly testing on CaTiO3 and PrVO3 perovskite compounds (powder), this approach has proved particularly promising. The challenge was then to use the new approach in order to describe the slight structural variations of these compounds deposited as epitaxial thin films
Xiao, Juan. "Development of electron tomography on liquid suspensions using environmental scanning electron microscopy". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI050/document.
Pełny tekst źródłaESEM (Environmental Scanning Electron Microscopy) allows the observation of liquids under specific conditions of pressure and temperature. When working in the transmission mode, i.e. in STEM (Scanning Transmission Electron Microscopy), nano-objects can even be analyzed inside the liquid (“wet-STEM” mode). Moreover, in situ evaporation of water can be performed to study the materials evolution from the wet to the dry state. This work aims at developing electron tomography on liquid suspensions using STEM-in-ESEM, to obtain the 3D structure of nano-objects dispersed in a liquid. In a first part, Monte Carlo simulations and 2D wet-STEM experimental images are combined to study the contrast. Two kinds of liquid nano-materials are chosen as the sample: spherical gold particles (diameter around 40 nm) in suspension in water; latex SBA-PMMA suspension, a copolymer derived from styrene and metacrylic acid esters in aqueous solution, 3% PMMA shell included as steric surfactant. The comparison between simulated and experimental results helps to determine how water can affect the contrast of hydrated nano-materials. Tomography experiments are then performed on dry PU-carbon nanotubes nanocomposites using a previously developed home-made tomography device, and the volume is well reconstructed. When performing tomography on latex suspension, limitations are found on the temperature control of samples. We propose an optimization of the device with new observations conditions to better control water evaporation and condensation of liquid samples. Afterwards, a full 3D analysis on SBA-PMMA latex from dilute suspension to very concentrated one is performed, and a further study is presented in presence of a surfactant. The encouraging reconstruction results are used to model the particles arrangement. This shows the potentialities of wet-STEM tomography for the characterization of both solid and liquid nano-materials
Tran, Viet Dung. "Reconstruction et segmentation d'image 3D de tomographie électronique par approche "problème inverse"". Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-01056695.
Pełny tekst źródłaRakotomavo, Tiana. "Etude de la génération du piégeage interne dans le silicium par tomographie laser à balayage". Montpellier 2, 1991. http://www.theses.fr/1991MON20125.
Pełny tekst źródłaBen, Hassine Mohamed. "Contribution de la microscopie électronique à la compréhension des mécanismes de vieillissement des matériaux de batteries lithium-ion associées aux énergies renouvelables". Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0006.
Pełny tekst źródłaThe work presented in this thesis is part of the ANR project VISION (fine Study of the Aging mechanisms Battery Li-ION associated with renewable energy). An arsenal of electron microscopy techniques allowing to do observations from the micrometer scale (SEM) to the atomic scale (HRTEM, HR-HAADF) coupled with spectroscopic techniques (X microanalysis and electron energy loss) has been implemented to identify the aging processes occurring in long cycled Li-ion batteries. The so-studied Li-ion batteries are using Li[Ni1-x-yMnxCoy]O2 (NMC) and graphitic carbon as positive and negative electrode materials, respectively. These studies allowed us, not only, to visualize and obtain a better understanding in the degradation modes in SAFT stationary batteries but also to perform innovative microscopy techniques (such HR-HAADF or FIB tomography) in order to reveal the texture and the structure of the active materials. In the same way, a fundamental study on model materials (Li2Ru1-ySnyO3…), having structural and electrochemical properties similar materials used in commercial batteries, has been achieved. Through this study, superstructures were observed, by TEM, during the cycling and the role of oxygen in redox processes, which are behind the high capacity delivered by the lithium-rich composites (such as: Li2MnO3-LiMO2, M = Ni, Co…), has been discussed
Kizilyaprak, Caroline. "Études fonctionnelles et structurales de la chromatine dans les noyaux des cellules photoréceptrices de souris sauvages et de souris modèles pour la maladie SCA7". Strasbourg, 2010. http://www.theses.fr/2010STRA6112.
Pełny tekst źródłaThe nuclei of rod photoreceptors in the retina of mice display a characteristic organization with condensed chromatin occupying 70% of their volume. In SCA7 mice, which are models for human type 7 SpinoCerebellar Ataxia, rod nuclei display decondensed chromatin which is associated with defects in transcription. Highly expressed genes in rods of healthy mice are poorly expressed in SCA7 mice. The ataxin 7protein which is mutated in SCA7 disease belongs to the SAGA complex which enhances transcription in particular through histone acetyltransferase activity. Chromatin structure is known to regulate transcription andit is generally thought that decondensed chromatin is transcriptionally active. The phenotype of SCA7 nucleiistherefore paradoxical. To understand this phenotype, methods for the cryo-preparation of retinas and their visualization by electron microscopy were optimized. The 3D organization of chromatin is determined by electron tomography. RNA polymerase II molecules and modified histones are mapped by immuno-gold labeling. Using these techniques, the structural organization of chromatin is correlated in vivo with histone modifications and transcriptional activity. The comparison of nuclei from SCA7 animals to those of healthy animals allows the characterization of chromatin reorganization. The analysis of proteins associated with chromatin demonstrates a drastic decrease in histone H1 in the nuclei of SCA7 mice. Our studies suggest that histone H1, known to be involved in chromatin compaction, plays a key role in the phenotype of SCA7 mice
Trépout, Sylvain. "Etude de l'assemblage du système d'efflux membranaire MexAB-OprM impliqué dans la résistance aux antibiotiques chez Pseudomonas aeruginosa : caractérisation combinée par Microbalance à cristal de quartz avec mesure de dissipation et cryo-tomographie électronique". Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13710/document.
Pełny tekst źródłaThe structure determination of membrane protein in lipid environment can be carried out using cryo electron microscopy combined with the recent development of data collection and image processing. We describe a protocol to study assemblies or stacks of membrane protein reconstitued into a lipid membrane using both cryo electron tomography and single particle analysis which is an alternative approach to electron crystallography for solving 3D structure. We show the organization of the successive layers of OprM molecules revealing the protein-protein interactions between OprM molecules of two successive lipid bilayers
Houlle, Matthieu. "Synthèse de nanofilaments carbonés : applications en catalyse et en renforcement mécanique". Strasbourg, 2009. http://www.theses.fr/2009STRA6262.
Pełny tekst źródłaSince the discovery of the fullerenes in 1985 which end up in the Nobel Prize for H. W. Kroto, R. F. Curl and R. E. Smalley in 1996, quite a lot of researches have been done on carbon nanomaterials. This thesis comes within the scope of these researches on carbon nanomaterials and is centered on two potenlial uses of these species : (i) the employ of carbon nanofilaments for the mechanical reinforcement of composite materials and (ii) the use of carbon nanofilaments as catalyst support for industrial processes. The second research topic develloped during this thesis divides in three chapters : a first chapter dealing with the synthesis and characterizations of new catalysts supported on carbon nanofilaments. Then a second chapter is presenting the catalytic tests realized with the previously prepared catalysts compared with more classic supports. Finally a last chapter is dedicated to the first results obtained in the use of carbon nanofilament s in the field of electrocatalysis. As a conclusion, this thesis ends with a list of the diverse prospects of development on the various issues considered within the manuscript. Some opportunities are also di scussed concerning the use of hybrid materials based on carbon and silicon carbide materials as weil as a broader utilization of the electron tomography technique for the characterization of catalytic systems
Verguet, Amandine. "Développements méthodologiques et informatiques pour la microscopie électronique en transmission appliqués à des échantillons biologiques Alignment of Tilt Series (Chapter 7 of the Book: Cellular Imaging: Electron Tomography and Related Techniques, Hanssen Eric) An ImageJ tool for simplified post-treatment of TEM phase contrast images (SPCI) Comparison of methods based on feature tracking for fiducial-less image alignment in electron tomography". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS487.
Pełny tekst źródłaTransmission Electron Microscopy is a major tool for performing structural studies in biology. Some methods used for image sampling and analysis need to be improved in order to observe electron dose sensitive samples with good contrast and good signal to noise ratio. During this thesis, various methodological and computational approaches have been studied which aim to improve image quality. First, I evaluated the relevance of combining energy filtered imaging with the STEM mode. I show that this allows an improvement of the signal to noise ratio of images. Then, I devised an algorithm that generates an image from phase data. This approach allows improving the image contrast over direct imaging. The use of a phase plate and focal tilt series are both efficient tools to achieve this goal. While working on the software approach for processing of tilt series, we found that a qualitative result can be obtained from a single image. I developped the SPCI plugin for the ImageJ software. It allows processing between one and three focal images. My work involves optimization of the tomographic reconstruction process, including working with both alignment algorithms and reconstruction algorithms. I expose my studies on image alignment methods used on tilt series. These methods do rely on the use of key points and associated local descriptors. They have proved to be efficient to process images lacking fiducial markers. Finally, I propose a new unified algorithmic approach for 3D reconstruction of tomographic tilt series acquired with sparse sampling. I then derived another novel method that integrates the image alignment step in the process. Studies and developments will continue on both methods in futur work
Rojbani, Hmida. "Alignement-reconstruction simultanée de tomogramme électronique et extraction de volume de ribosome". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD045/document.
Pełny tekst źródłaThis thesis deals with the problem of the alignment of 2D images obtained by transmission electron microscopy in the perspective of a three-dimensional reconstruction and the detection of ribosomes from the reconstructed object. A global optimization method is proposed to minimize a cost that allows the 3D alignment and reconstruction to be carried out jointly. The thesis also deals with the problem of segmentation of reconstructed 3D images with a probabilistic classification method. However, the nature of cryo-tomography images reveals noise and contrast problems. For this reason, two methods of 3D filtering have been proposed as pre-processing of segmentation, one is based on fractional integration, and the other on a multi-fractal analysis. The institute of biomedical research IGBMC in Strasbourg provides the projection images used in this thesis
Lepinay, Kevin. "Développement et applications de la tomographie chimique par spectroscopie EDX". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0124/document.
Pełny tekst źródłaThis thesis focuses on the evaluation of the STEM EDX chemical tomography technique: development of experimental procedures, data processing and volumes reconstruction, quality analysis of the results and evaluation of the overall complexity. Until now, STEM EDX analysis performances were very limited, so only few studies about this technique have been realized. However, very significant progress procured by the new SDD detectors as well as by the high brightness electronic sources (X-FEG), making the STEM EDX 2D analysis very fast, have revived the possibility of the chemical tomography, although the technique has to be developed and evaluated (performance and complexity). We have worked on a Tecnai Osiris which acquires EDX chemical mapping of hundreds of thousands of pixels with resolution of one nanometer and in a few minutes. We chose to prepare the rod-shaped samples by FIB and use a sample holder allowing an angle of exploration of 180° without shadowing effects. Then, using model samples (SiO2 balls in resin), we evaluated the sample deformation due to the electron beam irradiation. This allowed us to propose a method to reduce this effect by depositing a 20 nm chromium layer. Images simulations were used to evaluate the software and the reconstruction methods. The methodology of each step of the STEM EDX tomography analysis is then explained and the technique interest is demonstrated by comparing the 2D and the 3D analysis of a transistor 28 nm FDSOI. The quality of the reconstructions (signal-to-noise ratio, spatial resolution) was evaluated, in function of experimental parameters, using simulations and experiments. A resolution of 4 nm is demonstrated through the analysis of a test pattern and a "gate all around” transistor. For the same transistor, the possibility and the interest of a failure analysis at the nanoscale is proven. Analyses of a SRAM gate fail or of the holes in a copper pillar explain the benefits of a combination between a HAADF volume (morphology and resolution < 4 nm) and an EDX volume (chemical information). To conclude, this technique, which still needs to be improved in terms of simplicity, is already showing its usefulness for the analysis and the development of advanced technologies (20nm node and beyond)
Phan, Minh-Son. "Contribution à l'estimation de la similarité dans un ensemble de projections tomographiques non-orientées". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD041/document.
Pełny tekst źródłaCryo-electron microscopy is a tomographic technique allowing to reconstruct a 3D model of complex structure in biology from a set of acquired images. These images are known as the tomographic projections and are taken at unknown directions. The advantage of the cryo-electron microscopy is the 3D reconstruction at very high resolution. The reconstruction procedure consists of many steps such as projection alignment, projection classification, orientation estimation and projection refinement. During these steps, the distance between two projections is frequently measured. The work in this thesis aims at studying the distances mesured between two unknown-direction projections with the objective of improving the reconstruction result in the cryo-electron microscopy. The contribution of this thesis is the developement of a method for estimating the angular difference between two projections in 2D and 3D. Our method is based on the construction of a neighborhood graph whose vertices are the projections, whose edges link the projection neighbors and are weighted by a local approximation of the angular difference. The calculation of the weights relies on the projection moment properties. The proposed method has been tested on simulated images with different resolutions and at different noise levels. The comparison with others estimation methods of angular difference has been realised
Ngassa, Tankeu Yvan Georges. "Affinement de structure par PEDT (Precession Electron Diffraction Tomography) dans des échantillons d’intérêt minéralogique". Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1R079.
Pełny tekst źródłaSince a few years, Precession Electron Diffraction Tomography (PEDT) coupled to dynamical calculations of diffracted intensities has been used to allow the structure solving and refinement at the nanoscale in a Transmission Electron Microscope (TEM). The method is here applied to the structure refinement of ferromagnesian spinels and orthopyroxenes for their use as geothermometers. The aim is to test the sensitivity of the method for the measurement of the occupancy rate, depending on temperature, of iron and magnesium cations on specific crystallographic sites of the structure. Studied samples are either synthetic (magnesioferrite (MgFe2)O4 and hercynite (FeAl2)O4) or natural (orthopyroxene (Mg1.4Fe0.6)Si2O6). The sensitivity of the method is tested as a function of various parameters such as the sample-thinning technique used for TEM observations, the sample chemical composition, the refinement methodology and parameters. In the case of our spinels, it is shown that samples as obtained by Focused Ion Beam (FIB) are not appropriated, contrary to samples as obtained by simple mechanical grinding. Structure refinements have then been successfully conducted, provided the chemical composition of the sample is fixed during the procedure. The final accuracy is then far sufficient to use the refinement results for geosciences applications. Concerning pyroxenes, FIB samples are suitable for the study. Refinement results are nevertheless more accurate once the chemical composition is imposed during the procedure
Liu, Yang. "‘Tri-3D’ electron microscopy tomography by FIB, SEM and TEM : Application to polymer nanocomposites". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0076/document.
Pełny tekst źródłaThis work is focused on the characterization and quantification of the 3D distribution of different types of fillers (nanoparticles, nanotubes, etc.) in polymer matrices. We have essentially used tomography techniques in electron microscopy. Multiple approaches to electron tomography were performed: FIB-SEM (focused ion beam/scanning electron microscope) tomography, SEM tomography and TEM (transmission electron microscope) tomography. Polymer nanocomposites are basically synthesized in order to improve the physical properties (mechanical, electric, etc.) of the pure polymer constituting the matrix, by a controlled addition of fillers at the nanoscale. The characterization of such materials and the establishment of accurate correlations between the microstructure and the modified properties require a three-dimensional approach. According to the nanometric size of the fillers, electron microscopy techniques are needed. Two systems of polymer nanocomposites have been studied by multiple electron tomography approaches: P(BuA-stat-S)/MWNTs (statistical copolymer poly(styrene-co-butyl acrylate) reinforced by multi-walled carbon nanotubes) and P(BuA-stat-MMA)/SiO2 (statistical copolymer poly(butyl acrylate-co-methyl methacrylate) reinforced by silica nanoparticles). By combining various techniques, the characterization and the quantification of nanofillers were possible. In particular, statistics about size, distribution and volume fraction of the fillers were measured. This study has then provided 3D information, which contributes to a better understanding of properties of the nanocomposites. Attention has been paid to analyze carefully original data, and artifacts and causes of errors or inaccuracy were considered in the 3D treatments. We also attempted to compare benefits and drawbacks of all techniques employed in this study, and perspectives for future improvements have been proposed
Andersen, Ingrid Marie. "2D and 3D quantitative TEM mapping of CoNi nanowires". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30205.
Pełny tekst źródłaCylindrical magnetic nanowires (NWs) are currently subjects of high interest due to fast domain wall velocities and interaction with spin-waves, which are considered interesting qualities for developing future spintronic devices. This thesis aims to provide a wholesome quantitative and qualitative analysis of the local magnetic configuration in cylindrical Co-rich CoNi NWs with perpendicular magnetocrystalline anisotropy using state-of-the-art transmission electron microscopy (TEM) magnetic imaging techniques, mainly focused on two-dimensional (2D) and three-dimensional (3D) electron holography (EH). A correlative study between the NW's texture, modulation in composition, and magnetic configuration has been conducted. Further, the complex 3D nature of the domain and domain wall configurations have been analyzed using holographic vector field electron tomography (VFET) to retrieve all three components of the magnetic induction. Finally, I have successfully manipulated the magnetic configuration observed by Lorentz microscopy in Fresnel mode by the in situ injection of a current pulse. A TEM study comparing the magnetic configuration to the local NW structure was performed on single NWs. The crystal phase analysis was done by precession electron diffraction assisted automated crystal orientation mapping in the TEM combined with compositional analysis by scanning-TEM (STEM) electron energy loss spectroscopy (EELS) for a detailed correlation with the sample's magnetic configuration. The results reveal a coexistence of fcc grains and hcp phase with its c-axis oriented close to perpendicular to the wire axis in the same NW, which is identified as the origin of drastic local changes in the magnetic configuration. Two main configurations are observed in the NW region: a chain of transversal vortex-like states and a longitudinal curling state. The chain or vortices are linked to the hcp grain with the perpendicular magnetocrystalline anisotropy, as confirmed by micromagnetic simulations. The 3D magnetic structure of the domains and domain walls observed in the hcp grain of the NWs has been studied for two different remnant states: after the application of a saturation field perpendicular (i) and parallel (ii) to the NW axis. The measurements were done using state-of-the-art holographic VFET to extract all three components of the magnetic induction in the sample, as well as a 3D reconstruction of the volume from the measured electric potentials, giving insight into the local morphology of the NW. The results show a stabilization of a vortex chain in the case of perpendicular saturation, but longitudinal curling states separated by transversal domain walls after applying a parallel external field. Finally, preliminary Lorentz microscopy results are presented, documenting the manipulation of magnetic domain walls by the in situ injection of electrical pulses on a single cylindrical CoNi nanowire contacted by focused ion beam induced deposition. This is believed to be the forerunner for quantitative electrical measurements and in situ observations of domain wall dynamics using EH at the CEMES. A detailed protocol focusing on the crucial steps and challenges ahead for such a delicate experiment is presented, together with suggestions for future work to continue the developments
Rostaing, Philippe. "Caractérisation ultrastructurale de la mise en place des récepteurs aux neurotransmetteurs inhibiteurs dans la membrane postsynaptique". Paris 6, 2005. http://www.theses.fr/2005PA066610.
Pełny tekst źródłaLaloum, David. "Tomographie par rayons X haute résolution : application à l'intégration 3D pour la microélectronique". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY067/document.
Pełny tekst źródłaIn this thesis, an original non-destructive 3D characterization technique has been developed : the X-ray tomography hosted in a scanning electron microscope. This instrument is not widely used in the microelectronics field. This computed tomography (CT) system has been used for the high resolution analysis of metallic interconnections such as copper pillars and through silicon vias (TSVs). These components are widely used in the field of 3D integration to make vertical stacks of interconnected chips.The most significant contributions of this thesis are : (1) the enhancement of the analytical capabilities of the instrument. Many studies – simulations and experiments – have been performed in order to determine and improve the 2D and 3D resolutions of this imaging system. It has been shown that the 2D resolution of this instrument can reach 60 nanometers. The quality of the projections and reconstruction has also been improved through the implementation of iterative reconstruction algorithms and various projections alignment methods. (2) The reduction of the scanning time by a factor 3 through the implementation of constrained reconstruction techniques such as the reconstruction method based on the total variation minimization. (3) The application of effective correction algorithms for removing reconstruction artefacts due to the polychromaticity of the X-ray beam. (4) The application of all these reconstruction methods and algorithms on real cases encountered by materials engineers
Leveau, Lucie. "Etude de nanofils de silicium comme matériau d'électrode négative de batterie lithium-ion". Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01234963v2/document.
Pełny tekst źródłaPerret, Anouk. "Méthodologie de caractérisation microstructurale 3D de matériaux poreux structurés pour la thermique". Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0042/document.
Pełny tekst źródłaThe national objectives on the reduction of the rejections of greenhouse gases bring to the necessity of a thermal renovation for 75 % of the French buildings. As the requirements for old and new buildings increase their standards, design thinner and more efficient insulation materials is of great and increasing interest. New insulating materials with thermal conductivities lower than the still dry air (25 mW / (m. K)), such as based silica xerogel products (15 mW / ( m.K )), recently developed, are an interesting choice to answer those new fonctionnalities. In our study, silica xerogels (porosity > 80 %, specific surface > 600 m ²/g) are available as granular materials and binded stiff composite boards (xerogels / latex). The optimization of these materials requires to understand the link between their microstructure, their thermal conductivity and their mechanical behaviour
Matskova, Natalia. "Approche multi-échelle pour la caractérisation de l'espace poreux des réservoirs pétroliers argileux non conventionnels". Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2276.
Pełny tekst źródłaGas shale reservoirs are characterized by pore systems, associated with a heterogeneous spatial distribution of mineral and organic phases at multiple scales. This high heterogeneity requires a multi-scale & multi-tool approach to characterize the pore network. Such an approach has been developed on 7 cores from the Vaca Muerta formation (Argentina), which belong to areas with various hydrocarbon maturities, but with comparable mineral compositions. 3D µtomography and quantitative 2D mapping of the connected porosity by autoradiography have been applied at the core scale, in aim to localize and analyze the spatial heterogeneities, and to identify similar homogenous areas for localizing comparable sub-samples.The correlative coupling of various techniques was applied to achieve quantitative balance of porosity and pore size distribution, from mm to nm scales on representative sub-samples and for the first time, on preserved blocks rather than crushed powders, even for nitrogen gas adsorption experiments. Results of autoradiography are in very good agreement with other total bulk porosities, indicating that all pores are connected and accessed by the 14C-MMA used for impregnation. Decreased total porosity and pore throat/body sizes were also observed as organic matter maturity increased. An innovative approach for electron microscopy images acquisition and treatment provided large mosaics, with the distribution of mineral and organic phases at the cm scale. The correlative coupling with the autoradiography porosity map of the same zone, revealed the spatial correlations between mineralogical variations and porosity
Bhattacharya, Arunodaya. "Ion irradiation effects on high purity bcc Fe and model FeCr alloys". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112398/document.
Pełny tekst źródłaFeCr binary alloys are a simple representative of the reduced activation ferritic/martensitic (F-M) steels, which are currently the most promising candidates as structural materials for the sodium cooled fast reactors (SFR) and future fusion systems. However, the impact of Cr on the evolution of the irradiated microstructure in these materials is not well understood in these materials. Moreover, particularly for fusion applications, the radiation damage scenario is expected to be complicated further by the presence of large quantities of He produced by the nuclear transmutation (~ 10 appm He/dpa). Within this context, an elaborate ion irradiation study was performed at 500 °C on a wide variety of high purity FeCr alloys (with Cr content ranging from ~ 3 wt.% to 14 wt.%) and a bcc Fe, to probe in detail the influence of Cr and He on the evolution of microstructure. The irradiations were performed using Fe self-ions, in single beam mode and in dual beam mode (damage by Fe ions and co-implantation of He), to separate ballistic damage effect from the impact of simultaneous He injection. Three different dose ranges were studied: high dose (157 dpa, 17 appm He/dpa for the dual beam case), intermediate dose (45 dpa, 57 appm He/dpa for dual beam case) and in-situ low dose (0.33 dpa, 3030 appm He/dpa for the dual beam case). The experiments were performed at the JANNuS triple beam facility and dual beam in situ irradiation facility at CEA-Saclay and CSNSM, Orsay respectively. The microstructure was principally characterized by conventional TEM, APT and EDS in STEM mode. The main results are as follows: 1) A comparison of the cavity microstructure in high dose irradiated Fe revealed strong swelling reduction by the addition of He. It was achieved by a drastic reduction in cavity sizes and an increased number density. This behaviour was observed all along the damage depth, upto the damage peak. 2) Cavity microstrusture was also studied in the dual beam high dose irradiated FeCr alloys, and the results were compared to bcc Fe. The analysis was performed at an intermediate depth 300 – 400 nm below the surface (to avoid injected interstitial effect and surface effects), corresponding to 128 dpa, 13 appm He/dpa. TEM study revealed that the addition of small quantities of Cr, as low as 3wt.%, is highly efficient in strongly reducing void swelling. It was achieved by a drastic reduction of cavity sizes. For instance, average cavity size in Fe3%Cr was 0.9 nm as opposed to 6.8 nm in bcc Fe. Furthermore, the variation of void swelling as a function of Cr content is non-monotonic, with alocal maxima around 9 - 10wt.%Cr. 3) Coupling of conventional TEM, STEM/EDS and APT analysis on low and intermediate dose irradiated FeCr alloys revealed the presence of Cr enriched zones on the habit plane of the dislocation loops. This is expected to be due to radiation induced segregation (RIS) of Cr close to the core of the loops. As the loop grows under irradiation, the segregated areas are probably prevented from re-dissolution by impurity elements such as C. When imaged by TEM using classical diffraction contrast imaging techniques, these enriched zones produce displacement fringe contrast on the loop plane. A quantitative estimate of this enrichment was deduced by STEM/EDSand APT. The Cr content in these areas was between 23 - 35 at.% measured by EDS and 22 ± 2 at.% obtained by APT, whichis well below the Cr content of the Cr-rich α’ phase
Bran, Julien. "Elaboration et caractérisation de nanostructures Cu-Co : corrélation avec les propriétés magnétorésistives". Phd thesis, Université de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00781148.
Pełny tekst źródłaBonef, Bastien. "Analyses d'hétérostructures de semiconducteurs II-VI par sonde atomique tomographique et microscopie électronique en transmission". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY083/document.
Pełny tekst źródłaThis PhD work addresses the problem of atomic scale structural characterization of II-VI based heterostructures. The correlative use of atom probe tomography and transmission electron microscopy reveals the structure and composition of interfaces in ZnTe/CdSe superlattices to improve their growth condition. The atomic structure and the atomic Cr distribution are also revealed in (Cd,Cr)Te diluted magnetic semiconductor.When experimental parameters set in the atom probe are optimized, quantitative data can be obtain on both ZnTe and CdSe semiconductors with this technique. Compositions are obtained with the mass spectrum and it has to be correctly indexed. Experimental studies reveal that with the application of a low voltage on the tip and a moderate laser power around 2.5 nJ with a green laser (515 nm), the measured composition in ZnTe and CdSe are close to the stoichiometry between cations and anions. Setting the cations ratio Zn++/Zn+ around 0.06 et Cd++/Cd+ around 0.35 during the evaporation of the field is a reliable way to reach the optimum evaporation condition for different tips and in different atom probes. Those parameters are responsible for lowering the loss in the detection of the ions due to their different evaporation field. However, the application of a low laser power in UV (343 nm) will enhance the spatial resolution of the atom probe and the 3D reconstruction of both semiconductors. Before the evaporation of the superlattices, it is therefore compulsory to define the objectives of the experiment first.Structural studies of ZnTe/CdSe superlattices reveal that interfaces are composed of ZnSe. Their chemistry is obtain by high resolution Z-contrast images, composition profiles obtain by the zeta-factor method in EDX and by the presence of ZnSe molecular ions in the atom probe tomography mass spectrum. Many samples are investigated to highlight the ability of Zn and Se to bind together instead of Cd and Te. Growth condition are improved by taking this information into account and to force the formation of CdTe based interfaces. Despite the growth precaution, ZnSe bonds seem inevitable and it lowers the possibility to finally obtain CdTe interfaces.Atom probe tomography studies correlated with EDX chemical mapping reveal the gathering of Cr in rich region off a few nanometers in the diluted magnetic semiconductor CdCrTe. Both techniques are not reliable to get the composition of this Cr riche regions but they reveal a change in their shapes with the increase of Cr concentration in different samples
Limage, Stéphanie. "Relations entre propriétés et structures dans les émulsions stabilisées par un mélange de tensioactifs et de nanoparticules". Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30053.
Pełny tekst źródłaThis thesis is part of the ISS/FSL/FASES project which aims at understanding emulsion ageing mechanisms in microgravity. This manuscript is dedicated to the ground study of these emulsions, and particularly to those stabilized by surfactant/nanoparticles mixtures. These emulsions are diluted and composed of a paraffin oil continuous phase and an aqueous dispersed phase composed of the surfactant/particle mixtures. Emulsion characterization is performed with optical tomographic microscopy and cryo-scanning electron microscopy. A preliminary investigation of the dispersed phase shows that the proportion of surfactant and nanoparticles changes the rheological and microscopic properties of these mixtures. These changes allow the characterization of the coupling between surfactant molecules and nanoparticles. When these mixtures are emulsified in paraffin oil, a transition in the droplets morphology is evidenced. Indeed, dispersed phase droplets exhibit different shapes depending on the ratio of surfactant and nanoparticle concentrations: from spherical (for high ratios) they become polymorphous (for small ratios). Observations of these emulsions with cryo-scanning electron microscopy show the existence of nanoparticles microstructures that helps the understanding of the origin of droplets deformation
Amichi, Lynda. "Etude du dopage de type p dans des nanostructures de GaN par corrélation entre sonde atomique tomographique et holographie électronique hors axe optique". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY088/document.
Pełny tekst źródłaThe aim of the thesis is to develop a methodology for the investigation of Mg which acts as p-type doping in GaN. We relate the spatial distribution of the dopants with their electrical activity which is achieved by coupling two complementary approaches, Atom Probe Tomography (APT) and Off-axis electron holography. These measurements have also been combined with high-resolution electron microscopy (HR-(S)TEM) for the structural characterization. APT is a unique characterization technique, based on the field effect evaporation of individual atoms of a needle shape sample, allowing the analysis of nano-devices both in terms of morphology and composition in three dimensions at the atomic scale. Off-axis electron holography uses an electron biprism to form an interference pattern from which the electrostatic potential arising from the active dopants can be determined. In this work the experimental procedure has been optimized for both techniques including specimen preparation, the microscope parameters and data treatment to recover accurate information about the position and activity of the dopants. For the holography measurements, a careful analysis of the artifacts that are present in these specimen has been performed to understand the effects of specimen preparation and charging under electron irradiation. We have performed these experiments at high temperature in-situ in the TEM (400 °C) as this increases the ionized dopant concentrations and reduces the artifacts that are present in our measurements. Having developed the methodology, these two techniques are then used to study the effect of temperature and dopant concentrations on the growth of Mg-doped GaN by MOCVD. We have been able to show by APT the existence of precipitates of Mg which are present from a concentration of 3E19 cm-3 whose size and density depends on the growth temperature and the total nominal dopant concentration. Their presence reduces the concentration of dopants that are potentially active in the specimens. However, the measurements of active dopants by holography combined with simulations suggest that the presence of these precipitates do not dominate the electrical properties of the material and that even in very highly doped specimens up to 2E20cm-3 the total active dopant concentrations are still higher than expected from previously published studies. The correlation between these techniques will provide valuable information to improve the Mg activation GaN which is currently a big issue for device manufacture
Cadel, Emmanuel. "Etude de la ségrégation intra et intergranulaire de solutés par sonde atomique tomographique et microscopie électronique en transmission". Rouen, 2000. http://www.theses.fr/2000ROUES036.
Pełny tekst źródłaCourjault, Nicolas. "Contribution à l'étude de solutions non destructives pour la détection et la localisation de défauts électriques dans les structures électroniques 3D". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30313/document.
Pełny tekst źródłaThe thesis purpose was to explore several failure analysis techniques (Magnetic microscopy, Lock-in Thermography, X-rays Tomography, Time Domain Reflectometry) on their capabilities to localize the electrical defect (Short circuit, open circuit, resistive open, etc.) on 3D electronic component and system. Assessment possibilities of these techniques are suggested in order to ensure the defect localization in these new components. In particular, implementations of magnetic analysis in tilted sample as well as introduction of phase and amplitude magnetic images have been realized. This work also proposes to couple information obtain from magnetic microscopy to X-rays Tomography where the all system would be driven by 3D magnetic simulation
Maetz, Jean-Yves. "Évolution de la microstructure d’un acier inoxydable lean duplex lors du vieillissement". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0008/document.
Pełny tekst źródłaLean duplex stainless steels are austeno-ferritic steels with lower nickel and molybdenum contents, developed in the late 90's. Considering mechanical properties, corrosion resistance and cost of raw material, this family is an interesting alternative to standard austenitic stainless steels, which currently represent two thirds of stainless steel production. However, lean duplex steels are relatively recent and their thermal stability has been relatively little studied, especially during long term aging. In this study, the microstructural evolution of a lean duplex steel 2101 was studied during isothermal aging at temperatures between 20 °C and 850 °C, from few minutes to several months. Aging kinetics were followed by thermoelectric power measurements (TEP), from which aged states were selected to be characterized by electron microscopy and atom probe tomography. At intermediate temperatures of 350 - 450 °C, Fe-Cr demixing and precipitation of Ni-Mn-Al-Si-Cu occur in the ferrite despite the low nickel content of this grade, leading to an increase in the TEP. For higher temperatures, at about 700 °C, the mechanisms which govern the different microstructural evolutions have been described by a multi-scale approach: the nucleation and growth of M23C6 and Cr2N, observed from few minutes of aging and the σ phase precipitation, observed for longer aging time. The latter is accompanied by a transformation of δ ferrite in γ2 secondary austenite, and by the partial transformation of austenite into martensite during cooling. The effect of different phases on the TEP of the lean duplex steel can be qualitatively described during aging by a rule of mixture
De, Luca Anthony. "Redistribution atomique de contaminants métalliques aux interfaces des structures des technologies CMOS". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4302/document.
Pełny tekst źródłaDuring this thesis work, we studied the atomic redistribution of metallic contaminantsin silicon and near a SiO2/Si interface. To conduct this study, we used three complementary characterisation techniques : transmission electron microscopy (TEM), atomic probe tomography (APT) and secondary ion mass spectrometry (SIMS).We first studied the diffusion and equilibrium segregation of various contaminants at a SiO2/Si interface, and more particularly, the diffusion of W and Mo. W exhibits a very slow diffusion kinetic.Physico-chemical characterizations performed by TEM and APT allowed discussing the concentrationprofiles obtained by SIMS leading to the diffusion model that we proposed. The study of Mo diffusionrevealed that this specy exhibits a low solubility limit in silicon and strongly interacts with irradiation-induced defects, leading to its precipitation.In a second phase, we studied the effect of a mobile interface, during a reaction, on the atomic redistribution of contaminants near this interface. We performed a comparative study of the behaviourof Fe and W during oxidation processes. W precipitates in the silicon substrate and is progressivelyrejected (snowplow) by the oxidation. Fe preferentially precipitates at the SiO2/Si interface. Theseprecipitates mask a part of the silicon substrate and thus hinder its oxidation, leading to the formation of characteristics pyramidal-shaped defects at the interface. Low temperature nickel germano-silicide formation have also been investigated. This reaction leads to the 3D snowplow of germanium atoms at the NiSiGe/SiGe interface
Azzam, Ahmad. "Microstructure et cinétique de précipitation dans des superalliages modèles CoAlW". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR130/document.
Pełny tekst źródłaSuperalloys are key material in aerospace industry. These materials are used to manufacturing the high temperature part of aeroengines. Currently Ni-based superalloys are the most widely used materials for high temperature applications. Researches for a new generation of superalloys with better properties have lead in 2006 to the discovery of a new stable L12 ordered, Co3(Al,W) phase embedded in the disordered γ-Co solid-solution matrix. This work aims to study the evolution of the microstructure at 900 °C and understanding the mechanism of dissolution and transformation of the γ' phase. Three different alloys with different Al/W ratios are studied here. TEM and MEB analyses are carried out on samples aged at 900 °C forvarious time. We show that γ' is a metastable phase and it dissolves in favor of B2-CoAl and D019-Co3W phases. Moreover, we highlight a mechanism of dissolution by fragmentation along the {111} close packed planes and stacking faults giving rise to D019 phase. We also study the kinetics of precipitation in the low supersaturated alloys.The early stages of precipitation of the γ' phase in a model Co based superalloy have been investigated at 900 °C using electron microscopy and atom probe tomography in the low supersaturated alloys. Nucleation, growth and coarsening stages have been studied with a focus on the temporal evolution of the precipitate composition in the light of recent theoretical developments on phase separation in multicomponent alloys. The experimental data have been confronted to the theories of nucleation and coarsening recently developed for such alloys, which are valid for non-ideal and non-dilute systems, and predict the temporal evolution of both the matrix and precipitate compositions. The rate constant for the mean size evolution of the particles, as derived from experiments, has been compared to the one predicted by the mentioned coarsening theory that accounts for a more accurate description of the thermodynamics of the phases, as compared with more classical approaches. From this comparison the γ/γ' interfacialenergy was derived and found to range between 30 and 48 mJ/m2. The exponents for the temporal evolution of average particles size, number of particles per unit volume were found identical to those for binary alloys during the coarsening regime, as expected, and the temporal evolutions of compositions in both γ and γ' phases were found to evolve as predictedby theory. Indeed, the W content in the particles, measured from atom probe tomography (APT) experiments, was found to significantly decrease with time and the observed evolution is remarkably well described by the theory and therefore is shown to originate from the competition between diffusion and capillarity
Shinde, Deodatta. "Utilisation de la sonde atomique tomographique laser pour les études spectroscopiques des matériaux pour l'énergie". Rouen, 2016. http://www.theses.fr/2016ROUES042.
Pełny tekst źródłaLaser assisted atom probe tomography (LaAPT) is a powerful technique for the structural and chemical analysis of materials at near atomic resolution and in 3-dimensions. Considering the nanoscale specimen and the use of ultra-fast laser pulses in the technique, this instrument can also be used to study light-matter interaction at the nanoscale. Hence the technique will not only give structural and chemical characterization at atomic scale of materials but also new insight on the optical and electrical properties at nano-scale. In this regard, the prime objective of this thesis is to study the feasibility of LaAPT as a versatile tool to investigate structural and optical properties of the nanoscale material with particular emphasis on materials for solar-energy plant, like METallic CERamics (CERMET), and for light emission, like InGaN/GaN quantum wells. The optical absorption properties of nanotips of Au-nanoparticles embedded in MgO and Fe2O3 matrix, have been studied coupling LaAPT analysis with optical and electron microscopy. Moreover, the heating process induced by the laser-energy absorption was also discussed. In the case of InGaN/GaN quantum wells, a novel correlative approach was introduced to study the direct correlation between structural and optical emission properties using LaAPT, Scanning Transmission Electron Microscopy (STEM) and micro-photoluminescence (µ-PL) spectroscopy
Yuan, Hui. "3D morphological and crystallographic analysis of materials with a Focused Ion Beam (FIB)". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0134/document.
Pełny tekst źródłaThe aim of current work is to optimize the serial-sectioning based tomography in a dual-beam focused ion beam (FIB) microscope, either by imaging in scanning electron microscopy (so-called FIB-SEM tomography), or by electron backscatter diffraction (so-called 3D-EBSD tomography). In both two cases, successive layers of studying object are eroded with the help of ion beam, and sequentially acquired SEM or EBSD images are utilized to reconstruct material volume. Because of different uncontrolled disruptions, drifts are generally presented during the acquisition of FIB-SEM tomography. We have developed thus a live drift correction procedure to keep automatically the region of interest (ROI) in the field of view. For the reconstruction of investigated volume, a highly precise post-mortem alignment is desired. Current methods using the cross-correlation, expected to be robust as this digital technique, show severe limitations as it is difficult, even impossible sometimes to trust an absolute reference. This has been demonstrated by specially-prepared experiments; we suggest therefore two alternative methods, which allow good-quality alignment and lie respectively on obtaining the surface topography by a stereoscopic approach, independent of the acquisition of FIB-SEM tomography, and realisation of a crossed ‘hole’ thanks to the ion beam. As for 3D-EBSD tomography, technical problems, linked to the driving the ion beam for accurate machining and correct geometrical repositioning of the sample between milling and EBSD position, lead to an important limitation of spatial resolution in commercial softwares (~ 50 nm)3. Moreover, 3D EBSD suffers from theoretical limits (large electron-solid interaction volume for EBSD and FIB milling effects), and seems so fastidious because of very long time to implement. A new approach, coupling SEM imaging of good resolution (a few nanometres for X and Y directions) at low SEM voltage and crystal orientation mapping with EBSD at high SEM voltage, is proposed. This method requested the development of computer scripts, which allow to drive the milling of FIB, the acquisition of SEM images and EBSD maps. The interest and feasibility of our approaches are demonstrated by a concrete case (nickel super-alloy). Finally, as regards crystal orientation mapping, an alternative way to EBSD has been tested; which works on the influence of channelling effects (ions or electrons) on the imaging contrast of secondary electrons. This new method correlates the simulations with the intensity variation of each grain within an experimental image series obtained by tilting and/or rotating the sample under the primary beam. This routine is applied again on a real case (polycrystal TiN), and shows a max misorientation of about 4° for Euler angles, compared to an EBSD map. The application perspectives of this approach, potentially faster than EBSD, are also evoked
Kountchou, Tawokam Mikael. "Gonflement sous irradiation d'un acier de structure pour un réacteur de quatrième génération". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR108/document.
Pełny tekst źródłaA cold-worked titanium stabilized austenitic steel, named 15-15Ti AIM1, is the reference material for fuel cladding to be used in the _rst core of ASTRID (prototype of Sodium cooled Fast neutron Reactor -SFR). This study contributes to the understanding of the microstructural evolution under high dose irradiation of AIM1 (> 100 dpa) and especially swelling mechanisms. Several ion irradiations of AIM1 and its precursor 15-15Ti D4 (AIM1 without phosphorus), were done at Jannus-Saclay facility. These irradiations were performed up to 150 dpa in single beam (Fe 2+) and up to 120 dpa in dual beams (Fe 2+ and He +) at a temperature set between 550 and 630 ° C in order to study the helium e_ects. Besides, thermal annealing at 650 ° Cequivalent to irradiation time (<100h) was carried out to separate the effects of temperature and irradiation. The microstructures and the irradiation-induced defects were characterized mainly by the transmission electron microscopy (TEM) and tomographic atom probe (SAT). During thermal annealing at 650 ° C, rapid precipitation of nanometric titanium carbides over dislocations was observed. A low density of phosphorus-enriched clusters (phosphide nucleation) was also detected. After irradiation with ions, the microstructure of AIM1 and 15-15Ti revealed high density of Frank faulted-loops distributed homogeneously and which didn'tevolve with the irradiation dose (between 45 and 150 dpa). The precipitation of nanometric titanium carbides, phosphides (in AIM1) and chromium carbides was observed. Precipitation of phosphides in AIM1 is accelerated by irradiation. Irradiation_induced segregation of Ni and Si on dislocations has also been highlighted. Single-beam irradiations even at 150 dpa show very low cavities density distributed heterogeneously in the grains. It is shown that the simultaneous injection of 1 appm / dpa helium leads to much higher cavity density. In this case, cavities are attached to nanoprecipitates (TiC and phosphides). Finally, a comparison between ion and neutron irradiation on 15-15Ti D4 highlighted significant differences in the evolution of precipitation and cavity formation mechanisms. A cluster dynamics model with the Crescendo code was used to simulate the formation of Frank loops, cavities and the evolution of the dislocation network, taking into account the helium production. The model parameters were adjusted to reproduce the experimental single beam irradiation data at 630°C. The extrapolation of the model shows the displacement of the swelling peak at low temperatures as the rate of damage decreases. Taking into account the presence of Helium, the model reproduces the increase of cavity density observed in double Fe-He beams
Duchaussoy, Amandine. "Déformation intense d'alliages d'aluminium à durcissement structural : mécanismes de précipitation et comportement mécanique". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR135.
Pełny tekst źródłaThe combination of two mechanisms to increase mechanical strength, namely precipitation and grain size reduction, has been explored in this thesis in the aim of increasing the properties of age hardenable aluminum alloy from the 7### series.Manufacturing by severe plastic deformation makes it possible to obtain nanostructured alloys with high density of grain boundaries, which allows increasing the yield strength according to the Hall-Petch law. However, the high density of defects (dislocations, vacancies, grain boundaries ...) and the internal stresses generated by this deformation results in inherently unstable nanostructures when precipitation heat treatment is performed. These nanostructures experience rapid grain growth and drastic changes in precipitation mechanisms (heterogeneous precipitation, accelerated kinetics).In this work we have studied nanostructures obtained by severe plastic deformation using HPT and HPS (High pressure torsion / sliding) on a model alloy, Al-2% Fe and a commercial alloy AA7449 enriched with iron. The strategy was to stabilize the ultra-fine grain structure by intermetallic iron-rich nanoparticles (Zener pinning) to allow homogeneous precipitation hardening and thus combine the two mechanisms to increase the yield strength. In this context, we have particularly investigated: 1) the influence of solutes on the physical mechanisms leading to dynamic recrystallization nanostructuring; 2) specific mechanisms involved in co-deforming phases with very different mechanical behaviors; 3) the phase transformations that may lead either to the formation of a supersaturated solid solution or, on the contrary, to the decomposition of a solid solution by deformation-induced precipitation; 4) the relationship between the nanostructures thus generated, their thermal stability and related mechanical properties.The observation of the microstructures and understanding of the mechanisms induced by the deformation and relations with the mechanical behavior has been undertaken with many techniques: scanning and transmission electron microscopy (SEM/TEM), ASTAR (orientation mapping by TEM), and atom probe tomography. The study of precipitation was carried out by DSC (differential scanning calorimetry), SAXS (small angle X-ray scattering) and in-situ TEM. Finally, the relationship with the mechanical behavior has been established on the basis of tensile tests and micro-hardness measurements
Staub, Déborah. "Étude du comportement mécanique à rupture des alumines de forte porosité : Application aux supports de catalyseurs d'hydrotraitement des résidus". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0089/document.
Pełny tekst źródłaIn this work, we study the mechanical behaviour of two types of catalysts supports produced by IFPEN and industrially used in residues hydrotreating. Those extruded supports are made of transition γ-alumina with about 70% of porous volume. The first material’s porosity is exclusively composed of mesopores (< 50 nm). The porosity of the second material is composed of both mesopores and macropores (up to 20 µm). Because of the limited knowledge of the stress fields in embedded catalysts supports in use in a reactor, this study aims at precisely and exhaustively describing the mechanical behaviour of those supports under a wide range of stresses, and identifying the possible damage mechanisms. The final objective is to better understand the influence of microstructural parameters on the mechanical properties of the supports in order to propose some leads about how to improve their mechanical strength. First, an adequate mechanical characterization methodology is set. On one hand, the tensile mechanical behaviour of the supports is studied with three-point bending and diametrical crushing tests. On the other hand, their compressive behaviour under various triaxiality rates is characterized in uniaxial and hydrostatic compression, and by spherical micro-indentation. The different damaging mechanisms are identified by imaging techniques such as scanning electronic microscopy and X-ray micro-tomography. Under tensile stresses, the supports exhibit a brittle behaviour and fracture initiates at a critical flaw. Under compressive stresses, a brittle/quasi-plastic transition is observed with increasing the triaxiality rate. The quasi-plasticity is mainly due to the densification of the macroporosity. The second part of the study consists in identifying, for each material, a fracture criterion able to represent every types of behaviour and physical phenomena observed on the same yield surface. This identification is achieved by coupling the spherical indentation tests to a numerical analysis. Fracture criteria involving hydrostatic pressure are well suited to describe the highly dissymmetric mechanical behaviour of the materials in tension and in compression. The last part of this work aims at studying the mechanical behaviour of a stack of supports under œdometric compression in order to produce stress fields more representative of those existing within the supports stacked in a reactor. This test is analysed by X-ray tomography, which allows us to determine/acknowledge the different damaging mechanisms involved in fragments and fines generation. The results illustrate the suitability of the bending and indentation tests to characterize the mechanical properties of a single support and relate them to its mechanical behaviour in a stack of supports under compression
Meyruey, Gwenaëlle. "Caractérisation et modélisation du vieillissement thermique d’un composite à base d’alliage d’Aluminium". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI092.
Pełny tekst źródłaPrecipitation-strengthened alloys as Al-Mg-Si alloys reinforced with ceramic particles are an appropriate alternative for industrial applications. The precipitation sequence in Al-Mg-Si alloys is particularly complex when Silicon is in excess with respect to the Mg2Si composition and it is expected to be modified by the presence of the ceramic reinforcement. This is why, for industrial applications, under certain use conditions, it is fundamental to be able to predict the evolution of the microstructure in the alloy and the consequences on mechanical properties. The present work is devoted to the study of an age-hardenable Al-Mg-Si aluminium alloy which, can be facing temperatures between 100°C and 350°C in use conditions. This material is characterized by a complex precipitation sequence due to Silicon-excess and ceramic particles. The main objectives of the work are the following: 1) To describe how the microstructure evolves in the Al-Mg-Si alloy with silicon excess studied, with or without reinforcement, during a long storage period at a temperature between 100°C and 350°C. Then, it appeared necessary to describe the evolution of the mechanical properties in the same conditions but starting from a T6 state (corresponding to peak aged conditions). 2) To predict these evolutions (microstructure and strength) using an appropriate model. It was highlighted that the high silicon excess in the studied alloy leads to a simultaneous precipitation of several semi-coherent phases. Their precipitation has been predicted thanks to a KWN-type model based on classical nucleation-growth theories, validated by the experiments, and implemented considering: 1) the competitive precipitation between coherent et semi-coherent phases, 2) the rod-shape morphology of precipitates with a variable aspect ratio. This model has been used for the prediction of the Time-Temperature-Transformation diagram of the alloys and its composite considering the acceleration of the precipitation kinetics observed and attributed to the high dislocation density resulting from the presence of ceramic particles. Finally, 2 methods for the mechanical properties prediction have been compared: 1) a JMAK-type empirical approach 2) a physically based approach. The JMAK approach allowed us a quicker and easier prediction of the loss of hardness from the T6 state, for alloy and composite, during isothermal and non-isothermal treatment. Despite a prediction close to the experimental results, this approach cannot give us information about the physical mechanisms responsible for the observed mechanical variations. Then, a physically based approach taking into account the predictions of the precipitation model was used for the yield stress estimation during aging with a micromechanical model. This approach gave encouraging results and could be a powerful tool for the prediction of the strength during industrial use conditions