Artykuły w czasopismach na temat „Microstructural effects”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Microstructural effects”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Herbster, Maria, Karsten Harnisch, Paulina Kriegel, et al. "Microstructural Modification of TiAl6V4 Alloy to Avoid Detrimental Effects Due to Selective In Vivo Crevice Corrosion." Materials 15, no. 16 (2022): 5733. http://dx.doi.org/10.3390/ma15165733.
Pełny tekst źródłaZeng, Qiu Lian, Zhong Guang Wang, and J. K. Shang. "Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-Free Solder." Key Engineering Materials 345-346 (August 2007): 239–42. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.239.
Pełny tekst źródłaGriffiths, Malcolm. "Microstructural Effects on Irradiation Creep of Reactor Core Materials." Materials 16, no. 6 (2023): 2287. http://dx.doi.org/10.3390/ma16062287.
Pełny tekst źródłaAgboola, Joseph, Emmanuel Anyoku, and Atinuke Oladoye. "Effects of Cooling Rate on the Microstructure, Mechanical Properties and Corrosion Resistance of 6xxx Aluminium Alloy." International Journal of Engineering Materials and Manufacture 6, no. 1 (2021): 43–49. http://dx.doi.org/10.26776/ijemm.06.01.2021.04.
Pełny tekst źródłaAkbari, G. H., H. Abbaszadeh, and H. Ghotbi Ravandi. "Effects of Al, Si and Mn on the Recrystallization Behaviors of Fe Containing 70B Brass." Materials Science Forum 558-559 (October 2007): 107–11. http://dx.doi.org/10.4028/www.scientific.net/msf.558-559.107.
Pełny tekst źródłaZhong, Ning, Songpu Yang, Tao Liu, et al. "Effects of Compositional Inhomogeneity on the Microstructures and Mechanical Properties of a Low Carbon Steel Processed by Quenching-Partitioning-Tempering Treatment." Crystals 13, no. 1 (2022): 23. http://dx.doi.org/10.3390/cryst13010023.
Pełny tekst źródłaRegone, Wiliam, and Sérgio Tonini Button. "Effects of deformation on the microstructure of a Ti-V microalloyed steel in the phase transition region." Rem: Revista Escola de Minas 57, no. 4 (2004): 303–11. http://dx.doi.org/10.1590/s0370-44672004000400014.
Pełny tekst źródłaHu, Zhitao, Xin Wang, Yuzhou Du, et al. "Effects of graphite nodule count on microstructural homogeneity of austempered ductile iron (ADI)." Metallurgical Research & Technology 120, no. 2 (2023): 217. http://dx.doi.org/10.1051/metal/2023031.
Pełny tekst źródłaYang, Hongyue, Ji Qian, Ming Yang, Chunxi Li, Hengfan Li, and Songling Wang. "Study on the Effects of Microstructural Surfaces on the Attachment of Moving Microbes." Energies 13, no. 17 (2020): 4421. http://dx.doi.org/10.3390/en13174421.
Pełny tekst źródłaSnopiński, Przemysław, Krzysztof Matus, Ondřej Hilšer, and Stanislav Rusz. "Effects of Built Direction and Deformation Temperature on the Grain Refinement of 3D Printed AlSi10Mg Alloy Processed by Equal Channel Angular Pressing (ECAP)." Materials 16, no. 12 (2023): 4288. http://dx.doi.org/10.3390/ma16124288.
Pełny tekst źródłaLi, Hui, Zhanglong Zhao, Yongquan Ning, Hongzhen Guo та Zekun Yao. "Characterization of Microstructural Evolution for a Near-α Titanium Alloy with Different Initial Lamellar Microstructures". Metals 8, № 12 (2018): 1045. http://dx.doi.org/10.3390/met8121045.
Pełny tekst źródłaDing, Qingqing, Hongbin Bei, Xinbao Zhao, Yanfei Gao, and Ze Zhang. "Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy." Crystals 10, no. 7 (2020): 572. http://dx.doi.org/10.3390/cryst10070572.
Pełny tekst źródłaYang, Yo Sep, S. Y. Park, Hyun Jo Jun, Chan Gyung Park, S. H. Lim, and D. Y. Ban. "Effects of Microstructure on the Fatigue Resistance of Steel Tire Cords." Materials Science Forum 475-479 (January 2005): 4125–28. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.4125.
Pełny tekst źródłaLannutti, J. J. "Characterization and Control of Compact Microstructure." MRS Bulletin 22, no. 12 (1997): 38–44. http://dx.doi.org/10.1557/s0883769400034734.
Pełny tekst źródłaMurr, L. E. "Microstructure-property hypermaps for shock-loaded materials." Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 416–19. http://dx.doi.org/10.1017/s0424820100143675.
Pełny tekst źródłaHabibi, Niloufar, Santhosh Mathi, Thorsten Beier, Markus Könemann, and Sebastian Münstermann. "Effects of Microstructural Properties on Damage Evolution and Edge Crack Sensitivity of DP1000 Steels." Crystals 12, no. 6 (2022): 845. http://dx.doi.org/10.3390/cryst12060845.
Pełny tekst źródłaBang, Kook Soo, Woo Yeol Kim, Chan Park, Young Ho Ahn, and Jong Bong Lee. "Effects of Nitrogen on Weld Metal Microstructure and Toughness in Submerged Arc Welding." Materials Science Forum 539-543 (March 2007): 3906–11. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.3906.
Pełny tekst źródłaGariboldi, Elisabetta, and Marco Colombo. "Characterization of Innovative Al-Si-Mg-Based Alloys for High Temperature Applications." Key Engineering Materials 710 (September 2016): 53–58. http://dx.doi.org/10.4028/www.scientific.net/kem.710.53.
Pełny tekst źródłaMohrbacher, Hardy, Jer-Ren Yang, Yu-Wen Chen, Johannes Rehrl, and Thomas Hebesberger. "Metallurgical Effects of Niobium in Dual Phase Steel." Metals 10, no. 4 (2020): 504. http://dx.doi.org/10.3390/met10040504.
Pełny tekst źródłaRodriguez vargas, Bryan ramiro, Luciano Albini, Giulia Tiracorrendo, Riccardo Massi, Giulia Stornelli, and Andrea Di Schino. "EFFECT OF ULTRAFAST HEATING ON AISI 304 AUSTENITIC STAINLESS STEEL." Acta Metallurgica Slovaca 29, no. 2 (2023): 104–7. http://dx.doi.org/10.36547/ams.29.2.1833.
Pełny tekst źródłaWidener, Christian A., Dwight A. Burford, and Sarah Jurak. "Effects of Tool Design and Friction Stir Welding Parameters on Weld Morphology in Aluminum Alloys." Materials Science Forum 638-642 (January 2010): 1261–66. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1261.
Pełny tekst źródłaStewart, Peter S., Stephen H. Davis, and Sascha Hilgenfeldt. "Microstructural effects in aqueous foam fracture." Journal of Fluid Mechanics 785 (November 23, 2015): 425–61. http://dx.doi.org/10.1017/jfm.2015.636.
Pełny tekst źródłaMishnaevsky, Leon. "Computational Analysis of the Effects of Microstructures on Damage and Fracture in Heterogeneous Materials." Key Engineering Materials 306-308 (March 2006): 489–94. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.489.
Pełny tekst źródłaLi, Jing Yuan, and Xiao Lei Du. "Effects of Microstructural Morphology on Mechanical Properties of Magnesium Alloys." Materials Science Forum 686 (June 2011): 113–19. http://dx.doi.org/10.4028/www.scientific.net/msf.686.113.
Pełny tekst źródłaFerreira-Palma, Carlos, Héctor J. Dorantes-Rosales, Víctor M. López-Hirata, and Alberto A. Torres-Castillo. "Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy." International Journal of Materials Research 112, no. 2 (2021): 108–17. http://dx.doi.org/10.1515/ijmr-2020-8009.
Pełny tekst źródłaBoutin, C. "Microstructural effects in elastic composites." International Journal of Solids and Structures 33, no. 7 (1996): 1023–51. http://dx.doi.org/10.1016/0020-7683(95)00089-5.
Pełny tekst źródłaHaddour, Lillia, Mourad Keddam, and Nadir Mesrati. "Relationships between Microstructure and Mechanical Properties of Polycristalline Alumina." Applied Mechanics and Materials 625 (September 2014): 192–95. http://dx.doi.org/10.4028/www.scientific.net/amm.625.192.
Pełny tekst źródłaVander Voort, George Frederic, Beatriz Suárez-Peña, and Juan Asensio-Lozano. "Metallographic Assessment of Al-12Si High-Pressure Die Casting Escalator Steps." Microscopy and Microanalysis 20, no. 5 (2014): 1486–93. http://dx.doi.org/10.1017/s143192761400172x.
Pełny tekst źródłaMikulla, Christoph, Lars Steinberg, Philipp Niemeyer, Uwe Schulz, and Ravisankar Naraparaju. "Microstructure Refinement of EB-PVD Gadolinium Zirconate Thermal Barrier Coatings to Improve Their CMAS Resistance." Coatings 13, no. 5 (2023): 905. http://dx.doi.org/10.3390/coatings13050905.
Pełny tekst źródłaLin, Yu-Ju, Che-Hua Yang, and Jiunn-Yuan Huang. "Influence of Microstructural Changes’ Effects on the Linear and Nonlinear Ultrasonic Parameters of Cast Stainless Steels." Applied Sciences 10, no. 10 (2020): 3476. http://dx.doi.org/10.3390/app10103476.
Pełny tekst źródłaKaijalainen, A., N. Vähäkuopus, M. Somani, S. Mehtonen, D. Porter, and J. Kömi. "The Effects of Finish Rolling Temperature and Niobium Microalloying on the Microstructure and Properties of a Direct Quenched High-Strength Steel." Archives of Metallurgy and Materials 62, no. 2 (2017): 619–26. http://dx.doi.org/10.1515/amm-2017-0091.
Pełny tekst źródłaRezvanian, O., M. A. Zikry, and A. M. Rajendran. "Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, no. 2087 (2007): 2833–53. http://dx.doi.org/10.1098/rspa.2007.0020.
Pełny tekst źródłaXiaoyu, Jiang, and Kong Xiangan. "Computer Simulation of 3-D Random Distribution of Short Fibers in Metal Matrix Composite Materials." Journal of Engineering Materials and Technology 121, no. 3 (1999): 386–92. http://dx.doi.org/10.1115/1.2812391.
Pełny tekst źródłaWakai, Eiichi, Shuhei Nogami, Akira Hasegawa, et al. "Effects of Helium Production and Displacement Damage on Microstructural Evolution and Mechanical Properties in Helium-Implanted Austenitic Stainless Steel and Ferritic/Martensitic Steel." Materials Science Forum 1024 (March 2021): 53–69. http://dx.doi.org/10.4028/www.scientific.net/msf.1024.53.
Pełny tekst źródłaBertolino, G., N. Bilger, and J. Crépin. "Modeling microstructures and microstructural effects on macroscopic and intragranular mechanical behavior." Computational Materials Science 40, no. 3 (2007): 408–16. http://dx.doi.org/10.1016/j.commatsci.2007.01.009.
Pełny tekst źródłaTian, Qu, Jennifer Schrack, Bennett Landman, Amal Wanigatunga, Susan Resnick, and Luigi Ferrucci. "Relative Vigorous-Intensity Physical Activity Predicts Brain Microstructural Changes in Older Adults." Innovation in Aging 5, Supplement_1 (2021): 443. http://dx.doi.org/10.1093/geroni/igab046.1720.
Pełny tekst źródłaLopes, Eder S. N., Alessandra Cremasco, Rodrigo Contieri, and Rubens Caram. "Effects of Aging Heat Treatment on the Microstructure of Ti-Nb and Ti-Nb-Sn Alloys Employed as Biomaterials." Advanced Materials Research 324 (August 2011): 61–64. http://dx.doi.org/10.4028/www.scientific.net/amr.324.61.
Pełny tekst źródłaOstad Shabani, Mohsen, Amir Baghani, Mohammad Reza Rahimipour, Mansour Razavi, Mohammad Zakeri, and Fatemeh Heydari. "Effect of temperature, time, and shear force on the morphology and size of dendrites in A356-Al2O3 composites." Journal of Composite Materials 56, no. 2 (2021): 329–38. http://dx.doi.org/10.1177/00219983211052602.
Pełny tekst źródłaFarh, Hichem, Hanna Belghit, Toufik Ziar, Abdelouahab Noua, and Fares Serradj. "The Cold Rolling Effects on the Microstructure and Micro-Hardness of Al-Mg-Si Alloy." Diffusion Foundations 18 (September 2018): 14–18. http://dx.doi.org/10.4028/www.scientific.net/df.18.14.
Pełny tekst źródłaTopping, Troy D., Ying Li, Enrique J. Lavernia, K. Manigandan, and T. S. Srivatsan. "The Influence of Processing on Microstructural Development, Tensile Response and Fracture Behavior of Aluminum Alloy 5083." Advanced Materials Research 410 (November 2011): 175–86. http://dx.doi.org/10.4028/www.scientific.net/amr.410.175.
Pełny tekst źródłaShekhar, Shashank, S. Abolghashem, S. Basu, J. Cai, and M. Ravi Shankar. "Interactive Effects of Strain, Strain-Rate and Temperatures on Microstructure Evolution in High Rate Severe Plastic Deformation." Materials Science Forum 702-703 (December 2011): 139–42. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.139.
Pełny tekst źródłaÇalışkan, Salim, and Rıza Gürbüz. "Heat treatment effects on near threshold region for AISI 4340 steels." Materials Testing 65, no. 4 (2023): 536–44. http://dx.doi.org/10.1515/mt-2022-0405.
Pełny tekst źródłaKim, Won Yong, Han Sol Kim, and Sung Hwan Lim. "Effects of Oxygen on Phase Stability and Mechanical Properties of Quenched Ti-Nb Alloys." Solid State Phenomena 124-126 (June 2007): 1377–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1377.
Pełny tekst źródłaClasen, Antje, and Antonia B. Kesel. "Microstructural Surface Properties of Drifting Seeds—A Model for Non-Toxic Antifouling Solutions." Biomimetics 4, no. 2 (2019): 37. http://dx.doi.org/10.3390/biomimetics4020037.
Pełny tekst źródłaEliezer, Dan, E. Tal-Gutelmacher, and Lothar Wagner. "High Fugacity Hydrogen Effects in Beta-21S Titanium Alloy." Materials Science Forum 546-549 (May 2007): 1355–60. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.1355.
Pełny tekst źródłaCalisti, V., A. Lebée, A. A. Novotny, and J. Sokolowski. "Sensitivity of the Second Order Homogenized Elasticity Tensor to Topological Microstructural Changes." Journal of Elasticity 144, no. 2 (2021): 141–67. http://dx.doi.org/10.1007/s10659-021-09836-6.
Pełny tekst źródłaAnghelina, Florina Violeta, Vasile Bratu, Elena Valentina Stoian, and Ileana Nicoleta Popescu. "Microstructural Investigation of Aluminum Alloys Type "2024" for the Aviation Industry." Advanced Materials Research 1114 (July 2015): 62–67. http://dx.doi.org/10.4028/www.scientific.net/amr.1114.62.
Pełny tekst źródłaJurči, Peter, Jana Ptačinová, Martin Sahul, Mária Dománková, and Ivo Dlouhy. "Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels – a review." Matériaux & Techniques 106, no. 1 (2018): 104. http://dx.doi.org/10.1051/mattech/2018022.
Pełny tekst źródłaMossaab, Blaoui Mohammed, Mokhtar Zemri, and Mustapha Arab. "Effect of medium carbon steel microstructure on tensile strength and fatigue crack growth." International Journal of Structural Integrity 10, no. 1 (2019): 67–75. http://dx.doi.org/10.1108/ijsi-05-2018-0030.
Pełny tekst źródłaRegier, R. W., A. Reguly, David K. Matlock, J. K. Choi, and John G. Speer. "Effects of Austenite Conditioning and Transformation Temperature on the Bainitic Microstructure in Linepipe Steels." Materials Science Forum 783-786 (May 2014): 85–90. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.85.
Pełny tekst źródła