Gotowa bibliografia na temat „Mitochondriopathies”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mitochondriopathies”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mitochondriopathies"
Finsterer, J. "Mitochondriopathies". European Journal of Neurology 11, nr 3 (marzec 2004): 163–86. http://dx.doi.org/10.1046/j.1351-5101.2003.00728.x.
Pełny tekst źródłaChinnery, P. F., i P. G. Griffiths. "Optic mitochondriopathies". Neurology 64, nr 6 (21.03.2005): 940–41. http://dx.doi.org/10.1212/01.wnl.0000157285.93611.b2.
Pełny tekst źródłaSwerdlow, Russell H. "The Neurodegenerative Mitochondriopathies". Journal of Alzheimer's Disease 17, nr 4 (23.07.2009): 737–51. http://dx.doi.org/10.3233/jad-2009-1095.
Pełny tekst źródłaTardieu, M., B. Barret i S. Blanche. "Antiviraux et mitochondriopathies". Archives de Pédiatrie 8 (maj 2001): 327–28. http://dx.doi.org/10.1016/s0929-693x(01)80062-2.
Pełny tekst źródłaGomes, Sérgio. "A review of mitochondrial disease in dogs". Companion Animal 26, nr 11 (2.12.2021): 257–64. http://dx.doi.org/10.12968/coan.2021.0018.
Pełny tekst źródłaBen Chehida, A., E. Ben Arab, S. Khatrouch, M. Zribi, H. Boudabous i M. S. Abdelmoula. "Manifestations endocriniennes dans les mitochondriopathies". Annales d'Endocrinologie 83, nr 5 (październik 2022): 301–2. http://dx.doi.org/10.1016/j.ando.2022.07.074.
Pełny tekst źródłaGriggs, Robert C., i George Karpati. "Muscle Pain, Fatigue, and Mitochondriopathies". New England Journal of Medicine 341, nr 14 (30.09.1999): 1077–78. http://dx.doi.org/10.1056/nejm199909303411411.
Pełny tekst źródłaRuitenbeek, W., R. Sengers, R. Van Laack, F. Trijbels, J. Bakkeren, A. Janssen i O. Van Diggelen. "150 ANTENATAL DIAGNOSIS OF MITOCHONDRIOPATHIES". Pediatric Research 20, nr 10 (październik 1986): 1059. http://dx.doi.org/10.1203/00006450-198610000-00205.
Pełny tekst źródłaLiskova, Alena, Marek Samec, Lenka Koklesova, Erik Kudela, Peter Kubatka i Olga Golubnitschaja. "Mitochondriopathies as a Clue to Systemic Disorders—Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine". International Journal of Molecular Sciences 22, nr 4 (18.02.2021): 2007. http://dx.doi.org/10.3390/ijms22042007.
Pełny tekst źródłaSwerdlow, Russell. "Mitochondrial Medicine and the Neurodegenerative Mitochondriopathies". Pharmaceuticals 2, nr 3 (3.12.2009): 150–67. http://dx.doi.org/10.3390/ph2030150.
Pełny tekst źródłaRozprawy doktorskie na temat "Mitochondriopathies"
SANGLA, IBAN. "Mitochondriopathies musculaires sans atteinte oculaire". Aix-Marseille 2, 1993. http://www.theses.fr/1993AIX20802.
Pełny tekst źródłaDI, MARCO JEAN-NOEL. "Le syndrome de kearns-sayre : situation actuelle au sein des mitochondriopathies". Aix-Marseille 2, 1990. http://www.theses.fr/1990AIX20005.
Pełny tekst źródłaSayadi, Kéfi. "Myopathie mitochondriale : discussion d'une observation avec déficit des groupes II et IV de la chaîne respiratoire mitochondriale". Montpellier 1, 1991. http://www.theses.fr/1991MON11157.
Pełny tekst źródłaOlichon, Aurélien. "Morphologie mitochondriale : fonctions et dysfonctions de la dynamine humaine OPA1". Toulouse 3, 2004. http://www.theses.fr/2004TOU30295.
Pełny tekst źródłaMitochondria are essential organelles that provide energy to the cell and act as reservoirs of apoptogenic molecules. Mitochondrial morphology and dynamics are crucial for their function and their transmission, and drastically change during apoptosis. To explain the dynamic of the mitochondrial network morphology, a model conserved from yeast to human proposes that two antagonistic forces, fission versus fusion, are monitored by proteins localized on the mitochondrial outer membrane, such as Dnm1/DRP-1 or Fzo1/Mfn1-2. Conversely, dynamic of the inner membrane is largely unknown. Data on the large GTPase Msp1 in S. Pombe, OPA1 in human, and Mgm1 in S. Cerevisiae suggest that this dynamin related protein is involved in the inner-membrane structure and dynamic. We have isolated the OPA1 gene sequence encoding a human dynamin. Moreover, we have shown that OPA1 gene is mutated in patients suffering from an hereditary optic neuropathy leading to blindness (ADOA: Autosomal Dominant Optic Atrophy, OMIM 165500) My thesis project was to characterize OPA1 function in order to understand its dysfunction, impact on mitochondrial dynamics and function, and especially answer some questions about the pathological process of the ADOA. Orthology between OPA1 and Msp1 was confirmed by showing that OPA1 complements the lethal msp1 gene deletion in fission yeast. Using both biochemical and cytological approaches we have precisely localized OPA1 strongly associated with the inner membrane of the mitochondria, facing the innermembrane space. To investigate OPA1 dynamin function, we used total or selective downregulation or over-expression of wild type OPA1 variants or mutant, and showed that OPA1 could function in the inner-membrane dynamics and could have a role in structuring the cristae membrane. This later structural role suggests that OPA1 could be a key regulator of the mobilization of cytochrome c by remodeling the cristae membrane
Berg, Alonso Laetitia. "Déficits de la chaîne respiratoire mitochondriale avec instabilité de l’ADN mitochondrial : identification de nouveaux gènes et mécanismes". Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4101.
Pełny tekst źródłaNon communiqué
Breuil, Norman. "Conséquences de dysfonctionnements mitochondriaux chez le nématode Caenorhabditis elegans : étude de trois gènes nucléaire ant-1.1, osgl-1 et atp-9". Paris 11, 2009. http://www.theses.fr/2009PA112363.
Pełny tekst źródłaMitochondrial diseases result in alterations of neuromuscular functions. At the molecular level these changes affect in fine the mitochondrial respiratory chain, the mitochondrial network and the mitochondrial genome stability. A better understanding of the mechanisms underlying the physiopathology of these diseases requires the development of novel animal experimental models. The nematode Caenorhabditis elegans was used as a model organism to elucidate the mechanistic bases of some of these pathologies and to provide new animal model for these human diseases. The family of nuclear genes encoding the mitochondrial adenine nucleotide translocator, whose dysfunctions could cause the progressive external ophthalmoplegia has been functionally characterized in the nematode. Results obtained allowed us to generate transgenic C. Elegans strains expressing mutant alleles of the human homologue. We also explored the role of the universal protein OSGL-1 in the mitochondrial physiology. Our results indicate that this protein is involved in mitochondrial genome stability and could therefore be a new candidate gene for human diseases associated with alterations of the mitochondrial genome. Finally, a C. Elegans strain with a dominant mutation in the nuclear gene atp-9 encoding a subunit of the respiratory chain complex V, has been isolated. This mutant summarizes most of the phenotypes observed in patients with mitochondrial disorders (alteration of mitochondrial network, increased oxidative stress and apoptosis) and could therefore, constitute a novel model to study diseases associated with ATP synthase deficiency
Nouet, Cécile. "Biogenèse des complexes respiratoires mitochondriaux chez la levure S. Cerevisiae et les cellules humaines". Versailles-St Quentin en Yvelines, 2008. http://www.theses.fr/2008VERS0009.
Pełny tekst źródłaThe mitochondrial respiratory chain consists of multimeric complexes composed of subunits encoded by the nuclear and mitochondrial genomes. Its biogenesis requires a fine tuning between nucleus and mitochondria. Several nuclear encoded factors are involved in mitochondrial gene expression and the following assembly of subunits. During my thesis I got interested in three factors involved in respiratory complex biogenesis in the yeast S. Cerevisiae and in human. The Oxa1 protein is involved in co-translational insertion of membrane subunits belonging to several complexes. I studied the role of Oxa1 in human by silencing its expression using RNA interference in fibroblasts. This work and other published data on yeast and human provide a new insight into the role of Oxa1. In addition I isolated the RMD9 gene as a high copy suppressor of an oxa1 mutant in S. Cerevisiae. I showed that Rmd9p controls the stability/maturation of all mitochondrial mRNA encoding respiratory complex subunits. Finally Bcs1, an ATPase belonging to the AAA family is required for assembly of respiratory complex III. In human, mutations in the BCS1L gene are responsible for various pathologies. I performed a structure-function analysis of Bcs1p in S. Cerevisiae. This study reveals three critical regions in the AAA domain. Besides I isolated extragenic suppressors which identification should contribute to a better understanding of Bcs1 function
BONNET, HUGUES. "Rhabdomyolyse familiale et mitochondriopathie". Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX20209.
Pełny tekst źródłaKlein, Pierre. "Les rôles de PABPN1 dans la dystrophie musculaire oculopharyngée". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066217.
Pełny tekst źródłaPABPN1 is an RNA binding protein involved in many post-transcriptional RNA regulation mechanisms. A pathological expansion of the GCN triplet in the gene leads to a muscular dystrophy called Oculopharyngeal muscular dystrophy (OPMD). The molecular mechanisms leading to a small expansion in an ubiquitous protein to a disease, where only few muscles are impaired are still not fully understood. The main pathological hallmark is the presence in the myonuclei of nuclear aggregates of the PABPN1 protein. Today there is no cure for OPMD patients. In this context the projects developed during this thesis have been to 1) study the molecular mechanisms involved in OPMD, 2) study the contribution of the nuclear aggregates in the physiopathology of the disease and 3) develop a gene therapy strategy. We found mitochondrial dysfunctions present in OPMD muscles and we decipher the molecular mechanism involved. Study of PABPN1 aggregates in OPMD has highlighted splicing deregulation events. Among them TNNT3, a RNA which encodes a muscle specific protein is deregulated and we found that the pre-mRNA is trapped in nuclear aggregates outsides speckles nuclear domain containing its natural splicing factor (SC35), leading to an imbalance of the ratio of two mutually exclusives exons of the transcript. The gene therapy strategy developed is a replacement strategy that consists of silencing PABPN1 using RNAi and also bringing a novel version of the protein using a cDNA, untargeted by RNAi thanks to the genetic code redundancy, which encodes a wild-type form of PABPN1. We obtained promising results both in vitro and in vivo in mice OPMD model with a rescue of the pathological phenotype
Heneine, Jana. "Investigating the mitochondrial stress response specific to human dopaminergic neurons : insights into Parkinson’s Disease-associated alterations and contribution of long non-coding RNAs". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS718.pdf.
Pełny tekst źródłaMitochondrial dysfunction is known to play a central role in the pathophysiology of Parkinson’s disease. Dopaminergic (DA) neurons of the substantia nigra pars compacta appear particularly vulnerable to mitochondrial stress, leading to their massive degeneration and the occurrence of motor symptoms. The molecular mechanisms underlying this selective susceptibility of human DA neurons remain poorly understood. Furthermore, the search for molecular elements intrinsic to DA neurons has been largely focused on protein-coding genes as of yet. However, there is growing interest in the study of non-coding elements of the genome such as long non-coding RNAs (lncRNAs), potent genomic regulator that display high cell type-and context-specificity. This work centered on the study of the mitochondrial stress response of human DA neurons and the potential contribution of lncRNAs to this response. We first used LUHMES-derived DA neurons to elucidate the specific response of human DA neurons to mitochondrial stress. We demonstrated that inhibiting the mitochondrial electron transport chain led to a significant disruption of mitochondrial homeostasis, resulting in mitochondrial loss. This is supported by a robust induction of mitophagy and a reduction in mitochondrial biogenesis. In addition to these mitochondrial impairments, we observed a stress-induced decline in the maturation status of the DA population and an elevated proportion of apoptotic cells, indicating cellular damage beyond the mitochondrial network. PERK-dependent Unfolded Protein Response of the Endoplasmic Reticulum (UPRER), emerged as a central coordinator of the stress response. It appeared to modulate the inactivation of the mitochondrial UPR (UPRmt) and the cell-specific expression of lncRNAs. The identification of novel lncRNAs, specifically expressed in human DA neurons upon stress, strongly suggests their involvement in the intrinsic molecular mechanisms underlying the DA stress response. We highlight the discovery of a stress-specific lncRNA, lnc-SLC6A15-5, which regulated translation resumption after mitochondrial stress potentially through modulating the expression of ATF4 target genes involved in the mTOR signaling regulation. In a second part, we wished to assess whether this mitochondrial stress response was altered in a PD context, in particular linked to PRKN mutations. For this, we collected transcriptomic data from induced pluripotent stem cells (iPSC)-derived cells from PD patients carrying PRKN mutations and age-matched healthy individuals. Our results suggest that PARKIN deficiency altered cells’ differentiation status, displaying a potential delay in maturity and increase in glial population. The PRKN-mutant cells also appeared “pre-stressed” in basal conditions, as they exhibited activation of effectors of the ATF6- and IRE1-UPRER, as well as the NRF2-dependent antioxidant response. Incubation with mitochondrial toxins expectedly exacerbated these responses, with stronger activation of the three UPRER branches, downstream pro-apoptotic signaling and potential dysregulation of DNA repair mechanisms in PRKN-mutants. Furthermore, we uncovered lncRNAs possibly regulated by PARKIN and potentially involved in neuronal system signaling pathways or mTOR signaling. Further functional experiments will be required to assess whether they may participate to the alterations in differentiation and stress response resulting from PARKIN loss. Our work improved our understanding of the human DA neuron-specific response to mitochondrial dysfunction in the context of PD. We also report valuable information on the potential role of lncRNAs in stress- and disease-associated processes
Książki na temat "Mitochondriopathies"
Medycyna mitochondrialna: Nowatorska metoda na pozornie nieuleczalne choroby. Białystok: Vital, 2015.
Znajdź pełny tekst źródłaMitochondrial disorders: Biochemical and molecular analysis. New York: Humana Press, 2012.
Znajdź pełny tekst źródłaJames, Holt Ian, red. Genetics of mitochondrial diseases. Oxford: Oxford University Press, 2003.
Znajdź pełny tekst źródłaFlint, Beal M., Howell Neil 1946- i Bodis-Wollner Ivan 1937-, red. Mitochondria and free radicals in neurodegenerative diseases. New York: Wiley-Liss, 1997.
Znajdź pełny tekst źródłaMitochondriopathien. Elsevier, 2016. http://dx.doi.org/10.1016/c2012-0-07448-0.
Pełny tekst źródłaTyler, D. D. The Mitochondrion in Health and Disease. Wiley-VCH, 1992.
Znajdź pełny tekst źródłaWong, Lee-Jun C. Mitochondrial Disorders: Biochemical and Molecular Analysis. Humana Press, 2016.
Znajdź pełny tekst źródłaMitochondrial Diseases: Models and Methods. Springer, 2011.
Znajdź pełny tekst źródłaLestienne, Patrick. Mitochondrial Diseases: Models and Methods. Springer, 2011.
Znajdź pełny tekst źródłaLestienne, Patrick. Mitochondrial Diseases: Models and Methods. Springer London, Limited, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Mitochondriopathies"
Braun-Falco, Markus, Henry J. Mankin, Sharon L. Wenger, Markus Braun-Falco, Stephan DiSean Kendall, Gerard C. Blobe, Christoph K. Weber i in. "Primary Mitochondriopathies". W Encyclopedia of Molecular Mechanisms of Disease, 1721. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6269.
Pełny tekst źródłaDesnuelle, C., i V. Paquis. "Exercise Intolerance and Mitochondriopathies". W Exercise Intolerance and Muscle Contracture, 67–73. Paris: Springer Paris, 1999. http://dx.doi.org/10.1007/978-2-8178-0855-0_7.
Pełny tekst źródłaLagler, Florian B. "Current and Emerging Therapies for Mitochondriopathies". W Handbook of Experimental Pharmacology, 57–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/164_2019_264.
Pełny tekst źródłaAngelini, C., A. Martinuzzi, M. Fanin, M. Rosa, R. Carrozzo i L. Vergani. "Various clinical presentation of mitochondriopathies: clinical and therapeutic considerations". W Molecular Basis of Neurological Disorders and Their Treatment, 255–62. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3114-8_24.
Pełny tekst źródłaLeung, George P. H. "Iatrogenic Mitochondriopathies: A Recent Lesson from Nucleoside/Nucleotide Reverse Transcriptase Inhibitors". W Advances in Experimental Medicine and Biology, 347–69. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2869-1_16.
Pełny tekst źródłaDeschauer, Marcus, i Stephan Zierz. "Mitochondriopathien". W Klinische Neurologie, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-44768-0_37-1.
Pełny tekst źródłaSmeitink, J., i U. Wendel. "Mitochondriopathien". W Pädiatrie, 388–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76460-1_43.
Pełny tekst źródłaSmeitink, J., i U. Wendel. "Mitochondriopathien". W Pädiatrie, 381–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-09176-0_43.
Pełny tekst źródłaFreisinger, P. "Mitochondriopathien". W Angeborene Stoffwechselkrankheiten bei Erwachsenen, 395–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45188-1_44.
Pełny tekst źródłaSperl, Wolfgang, i Peter Freisinger. "Mitochondriopathien". W Pädiatrie, 751–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60300-0_76.
Pełny tekst źródłaStreszczenia konferencji na temat "Mitochondriopathies"
Sperl, W. "Mitochondriopathien im Kindes- und Jugendalter". W 24. Kongress des Medizinisch-Wissenschaftlichen Beirates der Deutschen Gesellschaft für Muskelkranke (DGM) e.V. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685014.
Pełny tekst źródłaWowra, Tobias, Peter Meißner, Peter Franck, Ute Spiekerkötter i Anke Schumann. "Sonographischer Befund einer seltenen Mitochondriopathie- Säugling mit einer TRMU- Defizienz". W 46. Dreiländertreffen der DEGUM in Zusammenarbeit mit ÖGUM & SGUM. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1772406.
Pełny tekst źródłaMeissner, P., E. Arslan, V. Van Laak, U. von Arnim, R. Fricke i B. Schmidt. "Langzeitverlauf einer angeborenen Mitochondriopathie über 15 Jahre – Lungenfunktion, Atemmuskelkraft und Polysomnographie". W 60. Kongress der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1678124.
Pełny tekst źródłaSchiefele, Lisa, Ortraud Beringer, Harald Ehrhardt, Eva-Maria Mair, Christian Apitz, Michael Kaestner i Sebahattin Cirak. "Bailey-Bloch-Myopathie und Mitochondriopathie bei 10 Monate altem Mädchen konsanguiner Eltern". W Abstracts zur 49. Jahrestagung der Gesellschaft fär Neonatologie und Pädiatrische Intensivmedizin (GNPI). Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/s-0043-1769447.
Pełny tekst źródła