Gotowa bibliografia na temat „Modified convolutional neural network”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Modified convolutional neural network”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Modified convolutional neural network"
Sapunov, V. V., S. A. Botman, G. V. Kamyshov, and N. N. Shusharina. "Application of Convolution with Periodic Boundary Condition for Processing Data from Cylindrical Electrode Arrays." INFORMACIONNYE TEHNOLOGII 27, no. 3 (2021): 125–31. http://dx.doi.org/10.17587/it.27.125-131.
Pełny tekst źródłaWasim Khan. "Image Classification using modified Convolutional Neural Network." Journal of Electrical Systems 20, no. 3 (2024): 3465–72. https://doi.org/10.52783/jes.4982.
Pełny tekst źródłaIatsenko, D. V., and B. B. Zhmaylov. "IMPROVING THE EFFICIENCY OF THE CONVOLUTIONAL NEURAL NETWORK USING THE METHOD OF INCREASING THE RECEPTIVE FIELD." Vestnik komp'iuternykh i informatsionnykh tekhnologii, no. 195 (September 2020): 18–24. http://dx.doi.org/10.14489/vkit.2020.09.pp.018-024.
Pełny tekst źródłaIatsenko, D. V., and B. B. Zhmaylov. "IMPROVING THE EFFICIENCY OF THE CONVOLUTIONAL NEURAL NETWORK USING THE METHOD OF INCREASING THE RECEPTIVE FIELD." Vestnik komp'iuternykh i informatsionnykh tekhnologii, no. 195 (September 2020): 18–24. http://dx.doi.org/10.14489/vkit.2020.09.pp.018-024.
Pełny tekst źródłaMurinto, Murinto, and Sri Winiarti. "Modified particle swarm optimization (MPSO) optimized CNN’s hyperparameters for classification." International Journal of Advances in Intelligent Informatics 11, no. 1 (2025): 133. https://doi.org/10.26555/ijain.v11i1.1303.
Pełny tekst źródłaSun, Kai, Jiangshe Zhang, Junmin Liu, Shuang Xu, Xiangyong Cao, and Rongrong Fei. "Modified Dynamic Routing Convolutional Neural Network for Pan-Sharpening." Remote Sensing 15, no. 11 (2023): 2869. http://dx.doi.org/10.3390/rs15112869.
Pełny tekst źródłaAdhari, Firman Maulana, Taufik Fuadi Abidin, and Ridha Ferdhiana. "License Plate Character Recognition using Convolutional Neural Network." Journal of Information Systems Engineering and Business Intelligence 8, no. 1 (2022): 51–60. http://dx.doi.org/10.20473/jisebi.8.1.51-60.
Pełny tekst źródłaMisko, Joshua, Shrikant S. Jadhav, and Youngsoo Kim. "Extensible Embedded Processor for Convolutional Neural Networks." Scientific Programming 2021 (April 21, 2021): 1–12. http://dx.doi.org/10.1155/2021/6630552.
Pełny tekst źródłaProchukhan, Dmytro. "IMPLEMENTATION OF TECHNOLOGY FOR IMPROVING THE QUALITY OF SEGMENTATION OF MEDICAL IMAGES BY SOFTWARE ADJUSTMENT OF CONVOLUTIONAL NEURAL NETWORK HYPERPARAMETERS." Information and Telecommunication Sciences, no. 1 (June 24, 2023): 59–63. http://dx.doi.org/10.20535/2411-2976.12023.59-63.
Pełny tekst źródłaLuo, Guoliang, Bingqin He, Yanbo Xiong, et al. "An Optimized Convolutional Neural Network for the 3D Point-Cloud Compression." Sensors 23, no. 4 (2023): 2250. http://dx.doi.org/10.3390/s23042250.
Pełny tekst źródłaRozprawy doktorskie na temat "Modified convolutional neural network"
Ayoub, Issa. "Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39337.
Pełny tekst źródłaLong, Cameron E. "Quaternion Temporal Convolutional Neural Networks." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1565303216180597.
Pełny tekst źródłaBylund, Andreas, Anton Erikssen, and Drazen Mazalica. "Hyperparameters impact in a convolutional neural network." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18670.
Pełny tekst źródłaReiling, Anthony J. "Convolutional Neural Network Optimization Using Genetic Algorithms." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512662981172387.
Pełny tekst źródłaDiMascio, Michelle Augustine. "Convolutional Neural Network Optimization for Homography Estimation." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1544214038882564.
Pełny tekst źródłaEmbretsén, Niklas. "Representing Voices Using Convolutional Neural Network Embeddings." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261415.
Pełny tekst źródłaTawfique, Ziring. "Tool-Mediated Texture Recognition Using Convolutional Neural Network." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-303774.
Pełny tekst źródłaWinicki, Elliott. "ELECTRICITY PRICE FORECASTING USING A CONVOLUTIONAL NEURAL NETWORK." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2126.
Pełny tekst źródłaCui, Chen. "Convolutional Polynomial Neural Network for Improved Face Recognition." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1497628776210369.
Pełny tekst źródłaLi, Chao. "WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/133.
Pełny tekst źródłaKsiążki na temat "Modified convolutional neural network"
Ally, Afshan. A Hopfield neural network decoder for convolutional codes. National Library of Canada = Bibliothèque nationale du Canada, 1991.
Znajdź pełny tekst źródłaShanthini, A., Gunasekaran Manogaran, and G. Vadivu. Deep Convolutional Neural Network for The Prognosis of Diabetic Retinopathy. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3877-1.
Pełny tekst źródłaDoan, Tai. Convolutional Neural Network in Classifying Scanned Documents. GRIN Verlag GmbH, 2017.
Znajdź pełny tekst źródłaJourney from Artificial to Convolutional Neural Network. Central West Publishing, 2023.
Znajdź pełny tekst źródłaDeep Convolutional Neural Network for the Prognosis of Diabetic Retinopathy. Springer, 2023.
Znajdź pełny tekst źródłaManogaran, Gunasekaran, G. Vadivu, and A. Shanthini. Deep Convolutional Neural Network for the Prognosis of Diabetic Retinopathy. Springer, 2022.
Znajdź pełny tekst źródłaKashyap, Dr Nikita, Dr Dharmendra Kumar Singh, Dr Girish Kumar Singh, and Dr Arun Kumar Kashyap, eds. Identification of Diabetic Retinopathy Stages Using Modified DWT and Artificial Neural Network. AkiNik Publications, 2021. http://dx.doi.org/10.22271/ed.book.1314.
Pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft. Independently Published, 2018.
Znajdź pełny tekst źródłaKypraios, Ioannis. Performance Analysis of the Modified-Hybrid Optical Neural Network Object Recognition System Within Cluttered Scenes. INTECH Open Access Publisher, 2012.
Znajdź pełny tekst źródłaSangeetha, V., and S. Kevin Andrews. Introduction to Artificial Intelligence and Neural Networks. Magestic Technology Solutions (P) Ltd, Chennai, Tamil Nadu, India, 2023. http://dx.doi.org/10.47716/mts/978-93-92090-24-0.
Pełny tekst źródłaCzęści książek na temat "Modified convolutional neural network"
Vinotheni, C., S. Lakshmana Pandian, and G. Lakshmi. "Modified Convolutional Neural Network of Tamil Character Recognition." In Lecture Notes in Networks and Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4218-3_46.
Pełny tekst źródłaKim, Ho-Joon, Joseph S. Lee, and Hyun-Seung Yang. "Human Action Recognition Using a Modified Convolutional Neural Network." In Advances in Neural Networks – ISNN 2007. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72393-6_85.
Pełny tekst źródłaSharma, Aditi, and D. Franklin Vinod. "Classification of Bacterial Skin Disease Images Using Modified Convolutional Neural Network." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0769-4_59.
Pełny tekst źródłaParida, Prasanta Kumar, Lingraj Dora, Rutuparna Panda, and Sanjay Agrawal. "Multi-grade Brain Tumor Classification Using a Modified Convolutional Neural Network." In Intelligent Systems Design and Applications. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64836-6_45.
Pełny tekst źródłaBrinthakumari, S., and P. M. Sivaraja. "mCNN: An Approach for Plant Disease Detection Using Modified Convolutional Neural Network." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8477-8_17.
Pełny tekst źródłaGupta, Nidhi, Akhilesh Latoria, and Akash Goel. "Blood Cancer Classification with Gene Expression Using Modified Convolutional Neural Network Approach." In Artificial Intelligence in Cyber-Physical Systems. CRC Press, 2023. http://dx.doi.org/10.1201/9781003248750-11.
Pełny tekst źródłaBhattacharya, Suchimita, Manas Ghosh, and Aniruddha Dey. "Face Detection in Unconstrained Environments Using Modified Multitask Cascade Convolutional Neural Network." In Proceedings of International Conference on Industrial Instrumentation and Control. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7011-4_29.
Pełny tekst źródłaSrinivasulu, Asadi, Umesh Neelakantan, Tarkeswar Barua, Srinivas Nowduri, and MM Subramanyam. "Early Prediction of COVID-19 Using Modified Convolutional Neural Networks." In Data Analytics, Computational Statistics, and Operations Research for Engineers. CRC Press, 2022. http://dx.doi.org/10.1201/9781003152392-2.
Pełny tekst źródłaSrinivasulu, Asadi, Tarkeshwar Barua, Umesh Neelakantan, and Srinivas Nowduri. "Early Prediction of COVID-19 Using Modified Convolutional Neural Networks." In Advanced Technologies and Societal Change. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5090-1_6.
Pełny tekst źródłaLi, Hui, Wenxin Liang, and Zihan Liao. "Detection of Spammers Using Modified Diffusion Convolution Neural Network." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60470-7_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Modified convolutional neural network"
Singh, Brahmjit, Poonam Jindal, Pankaj Verma, Vishal Sharma, and Chandra Prakash. "Automatic Modulation Recognition Using Modified Convolutional Neural Network." In 2025 3rd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT). IEEE, 2025. https://doi.org/10.1109/dicct64131.2025.10986502.
Pełny tekst źródłaBeeharry, Yogesh, and Didier Gael Daryl Emilien. "A Modified Convolutional Neural Network Model for Automatic Modulation Classification." In 2025 Emerging Technologies for Intelligent Systems (ETIS). IEEE, 2025. https://doi.org/10.1109/etis64005.2025.10961873.
Pełny tekst źródłaNayak, Debasish Swapnesh Kumar, Arpita Priyadarshini, Pabani Mahanta, Soumyarashmi Panigrahi, Sushanta Meher, and Satyananda Swain. "Modified Deep Neural Network Approach to Identify Heart Disease using IoMT: Artificial Neural Networks or Convolutional Neural Networks!" In 2024 International Conference on Intelligent Computing and Sustainable Innovations in Technology (IC-SIT). IEEE, 2024. https://doi.org/10.1109/ic-sit63503.2024.10862075.
Pełny tekst źródłaVerma, Sonia, Pooja Singhal, Ritu Gupta, Abhilasha Singh, and Arun Kumar. "Facial Keypoint Detection using a Modified Convolutional Neural Network with RESNET50." In 2024 2nd International Conference on Advancements and Key Challenges in Green Energy and Computing (AKGEC). IEEE, 2024. https://doi.org/10.1109/akgec62572.2024.10868470.
Pełny tekst źródłaKrishnamaneni, Ramesh, Muralidhar Kurni, Souptik Sen, and Ashwin Murthy. "Modified Convolutional Neural Network with Multiple Features for Multimodal Sarcasm Detection." In 2024 2nd International Conference on Recent Advances in Information Technology for Sustainable Development (ICRAIS). IEEE, 2024. https://doi.org/10.1109/icrais62903.2024.10811714.
Pełny tekst źródłaSahoo, Parthasarathi, Aryadutta Khandual, Soumya Rath, Lipsarani Parida, Debendra Muduli, and Santosh Kumar Sharma. "Enhanced Brain Tumor Classification Using a Modified Xception Convolutional Neural Network." In 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2024. https://doi.org/10.1109/scopes64467.2024.10990472.
Pełny tekst źródłaWang, Yiwen, and Meiling Xu. "Modified BBO-based Graph Convolutional Recurrent Neural Network for Emotion Recognition." In 2025 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2025. https://doi.org/10.1109/cec65147.2025.11042952.
Pełny tekst źródłaLad, Saket, Bhavisha Chafekar, and Pramod Bide. "Lung Cancer Classification Using Deep Learning: A Comprehensive Approach with Modified Convolutional Neural Networks." In 2024 International Conference on Computational Intelligence and Network Systems (CINS). IEEE, 2024. https://doi.org/10.1109/cins63881.2024.10864431.
Pełny tekst źródłaKumar, Ajay, and Abhimanyu Singh Panwar. "Human Mental State Detection Using Modified Convolutional Neural Network with Leaky Rectified Linear Unit." In 2024 IEEE Region 10 Symposium (TENSYMP). IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752185.
Pełny tekst źródłaGu, Guangjuan, Ke Li, and Yalong Jiang. "A Modified Dwarf Mongoose Optimization Based Deep Convolutional Neural Network for Building Structural Damage Detection." In 2024 International Conference on Data Science and Network Security (ICDSNS). IEEE, 2024. http://dx.doi.org/10.1109/icdsns62112.2024.10691168.
Pełny tekst źródłaRaporty organizacyjne na temat "Modified convolutional neural network"
Guan, Hui, Xipeng Shen, Seung-Hwan Lim, and Robert M. Patton. Composability-Centered Convolutional Neural Network Pruning. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1427608.
Pełny tekst źródłaTilton, Miranda. CoNNOR: Convolutional Neural Network for Outsole Recognition. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-416.
Pełny tekst źródłaShao, Lu. Automatic Seizure Detection based on a Convolutional Neural Network-Recurrent Neural Network Model. Iowa State University, 2022. http://dx.doi.org/10.31274/cc-20240624-269.
Pełny tekst źródłaTarasenko, Andrii O., Yuriy V. Yakimov, and Vladimir N. Soloviev. Convolutional neural networks for image classification. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3682.
Pełny tekst źródłaRocco, Dominick Rosario. Muon Neutrino Disappearance in NOvA with a Deep Convolutional Neural Network Classifier. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1294514.
Pełny tekst źródłaZhang, Shu. Overcoming the reality gap: Studying synthetic image modalities for convolutional neural network training. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-1095.
Pełny tekst źródłaCheniour, Amani, Amir Ziabari, Elena Tajuelo Rodriguez, Mohammed Alnaggar, Yann Le Pape, and T. M. Rosseel. Reconstruction of 3D Concrete Microstructures Combining High-Resolution Characterization and Convolutional Neural Network for Image Segmentation. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2311320.
Pełny tekst źródłaDebroux, Patrick. The Use of Adjacent Video Frames to Increase Convolutional Neural Network Classification Robustness in Stressed Environments. DEVCOM Analaysis Center, 2023. http://dx.doi.org/10.21236/ad1205367.
Pełny tekst źródłaFerdaus, Md Meftahul, Mahdi Abdelguerfi, Elias Ioup, et al. KANICE : Kolmogorov-Arnold networks with interactive convolutional elements. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49791.
Pełny tekst źródłaEka Saputro, Widianto. PENGENALAN ALFABET BAHASA ISYARAT TANGAN PADA CITRA DIGITAL MENGGUNAKAN PENDEKATAN CONVEX HULL DAN CONVOLUTIONAL NEURAL NETWORK (CNN). ResearchHub Technologies, Inc., 2025. https://doi.org/10.55277/researchhub.rwpbjj07.1.
Pełny tekst źródła