Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Molecular Dynamics- Fluids.

Artykuły w czasopismach na temat „Molecular Dynamics- Fluids”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Molecular Dynamics- Fluids”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Loya, Adil, Antash Najib, Fahad Aziz, Asif Khan, Guogang Ren, and Kun Luo. "Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids." Beilstein Journal of Nanotechnology 13 (July 7, 2022): 620–28. http://dx.doi.org/10.3762/bjnano.13.54.

Pełny tekst źródła
Streszczenie:
The addition of metal oxide nanoparticles to fluids has been used as a means of enhancing the thermal conductive properties of base fluids. This method formulates a heterogeneous fluid conferred by nanoparticles and can be used for high-end fluid heat-transfer applications, such as phase-change materials and fluids for internal combustion engines. These nanoparticles can enhance the properties of both polar and nonpolar fluids. In the current paper, dispersions of nanoparticles were carried out in hydrocarbon and aqueous-based fluids using molecular dynamic simulations (MDS). The MDS results h
Style APA, Harvard, Vancouver, ISO itp.
2

Toxvaerd, S. "Fragmentation of fluids by molecular dynamics." Physical Review E 58, no. 1 (1998): 704–12. http://dx.doi.org/10.1103/physreve.58.704.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Colonna, Piero, and Paolo Silva. "Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations." Journal of Fluids Engineering 125, no. 3 (2003): 414–27. http://dx.doi.org/10.1115/1.1567306.

Pełny tekst źródła
Streszczenie:
The use of dense gases in many technological fields requires modern fluid dynamic solvers capable of treating the thermodynamic regions where the ideal gas approximation does not apply. Moreover, in some high molecular fluids, nonclassical fluid dynamic effects appearing in those regions could be exploited to obtain more efficient processes. This work presents the procedures for obtaining nonconventional thermodynamic properties needed by up to date computer flow solvers. Complex equations of state for pure fluids and mixtures are treated. Validation of sound speed estimates and calculations o
Style APA, Harvard, Vancouver, ISO itp.
4

Perez, Felipe, and Deepak Devegowda. "A Molecular Dynamics Study of Primary Production from Shale Organic Pores." SPE Journal 25, no. 05 (2020): 2521–33. http://dx.doi.org/10.2118/201198-pa.

Pełny tekst źródła
Streszczenie:
Summary We created a model of mature kerogen saturated with a black oil. Our fluid model spans light, intermediate, and long alkane chains; and aromatics, asphaltenes, and resins. The maximum pore diameter of our kerogen model is 2.5 nm. The insertion of a microfracture in the system allows us to study fluid transport from kerogen to the microfracture, which is the rate-limiting step in hydrocarbon production from shales. Our results indicate that the composition of the produced fluids changes with time, transitioning from a dry/wet gas to a gas condensate, becoming heavier with time. However,
Style APA, Harvard, Vancouver, ISO itp.
5

Barski, Marek, Małgorzata Chwał, and Piotr Kędziora. "Molecular Dynamics in Simulation of Magneto-Rheological Fluids Behavior." Key Engineering Materials 542 (February 2013): 11–27. http://dx.doi.org/10.4028/www.scientific.net/kem.542.11.

Pełny tekst źródła
Streszczenie:
The present paper is devoted to computational simulations of magneto - rheological fluids behavior subjected to external magnetic fields. In order to perform these simulations the modified molecular dynamic algorithm is adopted. The theoretical model of the magneto - rheological fluid in micro scale as well as the basic interactions between the ferromagnetic particles are discussed. Moreover, the classical molecular dynamic algorithm and its necessary modifications are also described. The proposed approach makes possible to study the process of the internal structure (constructed from the ferr
Style APA, Harvard, Vancouver, ISO itp.
6

Hawlitzky, M., J. Horbach, and K. Binder. "Simulations of Glassforming Network Fluids: Classical Molecular Dynamics versus Car-Parrinello Molecular Dynamics." Physics Procedia 6 (2010): 7–11. http://dx.doi.org/10.1016/j.phpro.2010.09.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Toro-Labbé, Alejándro, Rolf Lustig, and William A. Steele. "Specific heats for simple molecular fluids from molecular dynamics simulations." Molecular Physics 67, no. 6 (1989): 1385–99. http://dx.doi.org/10.1080/00268978900101881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Das, Sanjit K., Mukul M. Sharma, and Robert S. Schechter. "Solvation Force in Confined Molecular Fluids Using Molecular Dynamics Simulation." Journal of Physical Chemistry 100, no. 17 (1996): 7122–29. http://dx.doi.org/10.1021/jp952281g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nwobi, Obika C., Lyle N. Long, and Michael M. Micci. "Molecular Dynamics Studies of Properties of Supercritical Fluids." Journal of Thermophysics and Heat Transfer 12, no. 3 (1998): 322–27. http://dx.doi.org/10.2514/2.6364.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Keblinski, P., J. Eggebrecht, D. Wolf, and S. R. Phillpot. "Molecular dynamics study of screening in ionic fluids." Journal of Chemical Physics 113, no. 1 (2000): 282–91. http://dx.doi.org/10.1063/1.481819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Steele, William A., and Renzo Vallauri. "Computer simulations of pair dynamics in molecular fluids." Molecular Physics 61, no. 4 (1987): 1019–30. http://dx.doi.org/10.1080/00268978700101621.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Smith, Steven W., Carol K. Hall, and Benny D. Freeman. "Molecular dynamics study of entangled hard‐chain fluids." Journal of Chemical Physics 104, no. 14 (1996): 5616–37. http://dx.doi.org/10.1063/1.471802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wang, Jee-Ching, and Saroja Saroja. "Modeling Confined Fluids: An NhPT Molecular Dynamics Method." Molecular Simulation 29, no. 8 (2003): 495–508. http://dx.doi.org/10.1080/0892702031000065575.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Allen, Michael P., and Friederike Schmid. "A thermostat for molecular dynamics of complex fluids." Molecular Simulation 33, no. 1-2 (2007): 21–26. http://dx.doi.org/10.1080/08927020601052856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Barisik, Murat, and Ali Beskok. "Equilibrium molecular dynamics studies on nanoscale-confined fluids." Microfluidics and Nanofluidics 11, no. 3 (2011): 269–82. http://dx.doi.org/10.1007/s10404-011-0794-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kabadi, Vinayak N., and William A. Steele. "Molecular Dynamics of Fluids: The Gaussian Overlap Model." Berichte der Bunsengesellschaft für physikalische Chemie 89, no. 1 (1985): 2–9. http://dx.doi.org/10.1002/bbpc.19850890103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Smith, Steven W., Carol K. Hall, and Benny D. Freeman. "Molecular Dynamics for Polymeric Fluids Using Discontinuous Potentials." Journal of Computational Physics 134, no. 1 (1997): 16–30. http://dx.doi.org/10.1006/jcph.1996.5510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Salehin, Rofiques, Rong-Guang Xu, and Stefanos Papanikolaou. "Colloidal Shear-Thickening Fluids Using Variable Functional Star-Shaped Particles: A Molecular Dynamics Study." Materials 14, no. 22 (2021): 6867. http://dx.doi.org/10.3390/ma14226867.

Pełny tekst źródła
Streszczenie:
Complex colloidal fluids, depending on constituent shapes and packing fractions, may have a wide range of shear-thinning and/or shear-thickening behaviors. An interesting way to transition between different types of such behavior is by infusing complex functional particles that can be manufactured using modern techniques such as 3D printing. In this paper, we perform 2D molecular dynamics simulations of such fluids with infused star-shaped functional particles, with a variable leg length and number of legs, as they are infused in a non-interacting fluid. We vary the packing fraction (ϕ) of the
Style APA, Harvard, Vancouver, ISO itp.
19

HUANG, SHENG-YOU, XIAN-WU ZOU, ZHI-JIE TAN, and ZHUN-ZHI JIN. "DETERMINATION OF THE VAPOR-LIQUID CRITICAL POINT FROM THE SHORT-TIME DYNAMICS." Modern Physics Letters B 15, no. 12n13 (2001): 369–74. http://dx.doi.org/10.1142/s0217984901001768.

Pełny tekst źródła
Streszczenie:
Considering the average potential energy per particle as the parameter, we investigate the early-time dynamics of vapor-liquid transition in the critical region for 2D Lennard-Jones fluids by using NVT molecular dynamics simulations. The results verify the existence of short-time dynamic scaling in the fluid systems and show that the critical point Tc can be determined by the universal short-time behavior. The obtained value of Tc = 0.540 from the short-time dynamics is very close to the value of 0.533 from the Monte Carlo simulations in the equilibrium state of the systems.
Style APA, Harvard, Vancouver, ISO itp.
20

Winkler, Roland G., Rolf H. Schmid, Anja Gerstmair, and Peter Reineker. "Molecular dynamics simulation study of the dynamics of fluids in thin films." Journal of Chemical Physics 104, no. 20 (1996): 8103–11. http://dx.doi.org/10.1063/1.471497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Angelis, Dimitrios, Filippos Sofos, Konstantinos Papastamatiou, and Theodoros E. Karakasidis. "Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods." Micromachines 14, no. 7 (2023): 1446. http://dx.doi.org/10.3390/mi14071446.

Pełny tekst źródła
Streszczenie:
In this paper, we propose an alternative road to calculate the transport coefficients of fluids and the slip length inside nano-conduits in a Poiseuille-like geometry. These are all computationally demanding properties that depend on dynamic, thermal, and geometrical characteristics of the implied fluid and the wall material. By introducing the genetic programming-based method of symbolic regression, we are able to derive interpretable data-based mathematical expressions based on previous molecular dynamics simulation data. Emphasis is placed on the physical interpretability of the symbolic ex
Style APA, Harvard, Vancouver, ISO itp.
22

Andryushchenko, Vladimir, and Valeriy Rudyak. "Kinetic Model of Fluids Molecules Diffusion in Porous Media." Siberian Journal of Physics 6, no. 4 (2011): 89–94. http://dx.doi.org/10.54362/1818-7919-2011-6-4-89-94.

Pełny tekst źródła
Streszczenie:
Model of molecular fluids diffusion in porous media develop on the base of elementary kinetic theory. The dependence of self-diffusion and diffusion coefficients from pore sizes, porosity, and fluid density has been obtained. The predictions of created model have been compared with molecular dynamics modeling data
Style APA, Harvard, Vancouver, ISO itp.
23

KANO, Asumi, Tomohiro TSUJI, and Shigeomi CHONO. "Molecular dynamics simulation of shear flows of anisotropic fluids." Proceedings of Conference of Chugoku-Shikoku Branch 2017.55 (2017): K0502. http://dx.doi.org/10.1299/jsmecs.2017.55.k0502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Lapenta, Giovanni, Giovanni Maizza, Antonio Palmieri, Gianmarco Boretto, and Massimo Debenedetti. "Phase transitions in electrorheological fluids using molecular dynamics simulations." Physical Review E 60, no. 4 (1999): 4505–10. http://dx.doi.org/10.1103/physreve.60.4505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Cieplak, Marek, and Jayanth R. Banavar. "Molecular dynamics of immiscible fluids in chemically patterned nanochannels." Journal of Chemical Physics 128, no. 10 (2008): 104709. http://dx.doi.org/10.1063/1.2837804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wang, Jee-Ching, and Kristen A. Fichthorn. "A method for molecular dynamics simulation of confined fluids." Journal of Chemical Physics 112, no. 19 (2000): 8252–59. http://dx.doi.org/10.1063/1.481430.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Cieplak, M. "Molecular dynamics of fluids and droplets in patterned nanochannels." European Physical Journal Special Topics 161, no. 1 (2008): 35–44. http://dx.doi.org/10.1140/epjst/e2008-00748-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Toxvaerd, S. "Molecular Dynamics Simulations of Isomerization Kinetics in Condensed Fluids." Physical Review Letters 85, no. 22 (2000): 4747–50. http://dx.doi.org/10.1103/physrevlett.85.4747.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Thomas, Jason C., and Richard L. Rowley. "Transient molecular dynamics simulations of viscosity for simple fluids." Journal of Chemical Physics 127, no. 17 (2007): 174510. http://dx.doi.org/10.1063/1.2784117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Pickering, Steven, and Ian Snook. "Molecular dynamics study of the crystallisation of metastable fluids." Physica A: Statistical Mechanics and its Applications 240, no. 1-2 (1997): 297–304. http://dx.doi.org/10.1016/s0378-4371(97)00153-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Duan, Zhenhao, Nancy Møller, and John H. Wears. "Molecular dynamics equation of state for nonpolar geochemical fluids." Geochimica et Cosmochimica Acta 59, no. 8 (1995): 1533–38. http://dx.doi.org/10.1016/0016-7037(95)00059-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ju, Jianwei, Paul M. Welch, Kim Ø. Rasmussen, Antonio Redondo, Peter Vorobieff, and Edward M. Kober. "Effective particle size from molecular dynamics simulations in fluids." Theoretical and Computational Fluid Dynamics 32, no. 2 (2017): 215–33. http://dx.doi.org/10.1007/s00162-017-0450-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ladanyi, Branka M., and Richard M. Stratt. "Short-Time Dynamics of Vibrational Relaxation in Molecular Fluids." Journal of Physical Chemistry A 102, no. 7 (1998): 1068–82. http://dx.doi.org/10.1021/jp972517b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ranganathan, S., G. S. Dubey, and K. N. Pathak. "Molecular-dynamics study of two-dimensional Lennard-Jones fluids." Physical Review A 45, no. 8 (1992): 5793–97. http://dx.doi.org/10.1103/physreva.45.5793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Luo, Huaqiang, Giovanni Ciccotti, Michel Mareschal, Madeleine Meyer, and Bernard Zappoli. "Thermal relaxation of supercritical fluids by equilibrium molecular dynamics." Physical Review E 51, no. 3 (1995): 2013–21. http://dx.doi.org/10.1103/physreve.51.2013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Voulgarakis, Nikolaos K., and Jhih-Wei Chu. "Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids." Journal of Chemical Physics 130, no. 13 (2009): 134111. http://dx.doi.org/10.1063/1.3106717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Mehdipour, Nargess, Neda Mousavian, and Hossein Eslami. "Molecular dynamics simulation of the diffusion of nanoconfined fluids." Journal of the Iranian Chemical Society 11, no. 1 (2013): 47–52. http://dx.doi.org/10.1007/s13738-013-0274-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Rudyak, Valery Ya, Sergey L. Krasnolutskii, and Denis A. Ivanov. "Molecular dynamics simulation of nanoparticle diffusion in dense fluids." Microfluidics and Nanofluidics 11, no. 4 (2011): 501–6. http://dx.doi.org/10.1007/s10404-011-0815-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kabadi, Vinayak N. "Molecular Dynamics of Fluids: The Gaussian Overlap Model II." Berichte der Bunsengesellschaft für physikalische Chemie 90, no. 4 (1986): 327–32. http://dx.doi.org/10.1002/bbpc.19860900403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Martini, Ashlie, Stefan J. Eder, and Nicole Dörr. "Tribochemistry: A Review of Reactive Molecular Dynamics Simulations." Lubricants 8, no. 4 (2020): 44. http://dx.doi.org/10.3390/lubricants8040044.

Pełny tekst źródła
Streszczenie:
Tribochemistry, the study of chemical reactions in tribological interfaces, plays a critical role in determining friction and wear behavior. One method researchers have used to explore tribochemistry is “reactive” molecular dynamics simulation based on empirical models that capture the formation and breaking of chemical bonds. This review summarizes studies that have been performed using reactive molecular dynamics simulations of chemical reactions in sliding contacts. Topics include shear-driven reactions between and within solid surfaces, between solid surfaces and lubricating fluids, and wi
Style APA, Harvard, Vancouver, ISO itp.
41

Jia, Zijian, and Can Liang. "Molecular Dynamics and Chain Length of Edible Oil Using Low-Field Nuclear Magnetic Resonance." Molecules 28, no. 1 (2022): 197. http://dx.doi.org/10.3390/molecules28010197.

Pełny tekst źródła
Streszczenie:
Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Edible oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. In this research, low-field NMR (LF-NMR) relaxation characteristic data from various sample oils were analyzed. We also suggest a new method for predicting the size of edible oil molecules using LF-NMR relaxation time. According to the relative molecular mass, the carbon chain length and the transverse relaxation time of different sample oils, combined with oil viscos
Style APA, Harvard, Vancouver, ISO itp.
42

Galliéro, Guillaume, Christian Boned, and Antoine Baylaucq. "Molecular Dynamics Study of the Lennard−Jones Fluid Viscosity: Application to Real Fluids." Industrial & Engineering Chemistry Research 44, no. 17 (2005): 6963–72. http://dx.doi.org/10.1021/ie050154t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Magid, L. J., and P. Schurtenberger. "Characterizing Complex Fluids." MRS Bulletin 28, no. 12 (2003): 907–12. http://dx.doi.org/10.1557/mrs2003.253.

Pełny tekst źródła
Streszczenie:
AbstractAmong the experimental techniques used to characterize complex fluids, neutron scattering has played a unique and successful role, primarily for two reasons: (1) neutrons access the proper length and time scales, especially small-angle neutron scattering and reflectometry for structural and kinetic studies and neutron spin echo for dynamic investigations; and (2) for hydrogen-containing substances, the exchange of hydrogen by deuterium facilitates labeling on a molecular scale, an extremely important method for deciphering complex structures in multicomponent materials. In this short r
Style APA, Harvard, Vancouver, ISO itp.
44

Flenner, Elijah, and Grzegorz Szamel. "Viscoelastic shear stress relaxation in two-dimensional glass-forming liquids." Proceedings of the National Academy of Sciences 116, no. 6 (2019): 2015–20. http://dx.doi.org/10.1073/pnas.1815097116.

Pełny tekst źródła
Streszczenie:
Translational dynamics of 2D glass-forming fluids is strongly influenced by soft, long-wavelength fluctuations first recognized by D. Mermin and H. Wagner. As a result of these fluctuations, characteristic features of glassy dynamics, such as plateaus in the mean-squared displacement and the self-intermediate scattering function, are absent in two dimensions. In contrast, Mermin–Wagner fluctuations do not influence orientational relaxation, and well-developed plateaus are observed in orientational correlation functions. It has been suggested that, by monitoring translational motion of particle
Style APA, Harvard, Vancouver, ISO itp.
45

Cui, Wenzheng, Minli Bai, Jizu Lv, and Xiaojie Li. "On the Microscopic Flow Characteristics of Nanofluids by Molecular Dynamics Simulation on Couette Flow." Open Fuels & Energy Science Journal 5, no. 1 (2012): 21–27. http://dx.doi.org/10.2174/1876973x01205010021.

Pełny tekst źródła
Streszczenie:
Adding a small amount of nanoparticles to conventional fluids (nanofluids) has been proved to be an effective way for improving capability of heat transferring in base fluids. The change in micro structure of base fluids and micro motion of nanoparticles may be key factors for heat transfer enhancement of nanofluids. Therefore, it is essential to examine these mechanisms on microscopic level. The present work performed a Molecular Dynamics simulation on Couette flow of nanofluids and investigated the microscopic flow characteristics through visual observation and statistic analysis. It was fou
Style APA, Harvard, Vancouver, ISO itp.
46

Boek, E. S., A. Jusufi, H. L wen, and G. C. Maitland. "Molecular design of responsive fluids: molecular dynamics studies of viscoelastic surfactant solutions." Journal of Physics: Condensed Matter 14, no. 40 (2002): 9413–30. http://dx.doi.org/10.1088/0953-8984/14/40/326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Winkler, Roland G., Rolf H. Schmid, and Peter Reineker. "Molecular dynamics simulation study of the dynamics of fluids at solid-liquid interfaces." Macromolecular Symposia 106, no. 1 (1996): 353–66. http://dx.doi.org/10.1002/masy.19961060133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Perez, Felipe, and Deepak Devegowda. "A Molecular Dynamics Study of Soaking During Enhanced Oil Recovery in Shale Organic Pores." SPE Journal 25, no. 02 (2020): 832–41. http://dx.doi.org/10.2118/199879-pa.

Pełny tekst źródła
Streszczenie:
Summary In this work we use molecular dynamics simulations to investigate the interactions during soaking time between an organic solvent (pure ethane) initially in a microfracture and a mixture of hydrocarbons representative of a volatile oil, and other reservoir fluids such as carbon dioxide and water, originally saturating an organic pore network with a predominant pore size of 2.5 nm. We present evidence of the in-situ fractionation in liquid-rich shales and its implications in enhanced oil recovery (EOR) projects. We also discuss the behavior of the larger and heavier molecules in the flu
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Ting, and Erik Nies. "Coarse-Grained Molecular Dynamics Modeling of Strongly Associating Fluids: Thermodynamics, Liquid Structure, and Dynamics of Symmetric Binary Mixture Fluids." Journal of Physical Chemistry B 111, no. 28 (2007): 8131–44. http://dx.doi.org/10.1021/jp0722096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Delgado-Buscalioni, Rafael, Peter V. Coveney, Graham D. Riley, and Rupert W. Ford. "Hybrid molecular-continuum fluid models: implementation within a general coupling framework." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1833 (2005): 1975–85. http://dx.doi.org/10.1098/rsta.2005.1623.

Pełny tekst źródła
Streszczenie:
Over the past three years we have been developing a new approach for the modelling and simulation of complex fluids. This approach is based on a multiscale hybrid scheme, in which two or more contiguous subdomains are dynamically coupled together. One subdomain is described by molecular dynamics while the other is described by continuum fluid dynamics; such coupled models are of considerable importance for the study of fluid dynamics problems in which only a restricted aspect requires a fully molecular representation. Our model is representative of the generic set of coupled models whose algor
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!