Gotowa bibliografia na temat „Multi-loop Feynman integrals”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multi-loop Feynman integrals”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Multi-loop Feynman integrals"

1

Smirnov, Vladimir A., and Matthias Steinhauser. "Solving recurrence relations for multi-loop Feynman integrals." Nuclear Physics B 672, no. 1-2 (2003): 199–221. http://dx.doi.org/10.1016/j.nuclphysb.2003.09.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Isaev, A. P. "Multi-loop Feynman integrals and conformal quantum mechanics." Nuclear Physics B 662, no. 3 (2003): 461–75. http://dx.doi.org/10.1016/s0550-3213(03)00393-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Baikov, P. A. "Criterion of irreducibility of multi-loop Feynman integrals." Physics Letters B 474, no. 3-4 (2000): 385–88. http://dx.doi.org/10.1016/s0370-2693(00)00053-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, Yajun. "Wick rotations, Eichler integrals, and multi-loop Feynman diagrams." Communications in Number Theory and Physics 12, no. 1 (2018): 127–92. http://dx.doi.org/10.4310/cntp.2018.v12.n1.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aguilera-Verdugo, José de Jesús, Félix Driencourt-Mangin, Roger José Hernández-Pinto, et al. "A Stroll through the Loop-Tree Duality." Symmetry 13, no. 6 (2021): 1029. http://dx.doi.org/10.3390/sym13061029.

Pełny tekst źródła
Streszczenie:
The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
Style APA, Harvard, Vancouver, ISO itp.
6

Preti, Michelangelo. "STR: A Mathematica package for the method of uniqueness." International Journal of Modern Physics C 31, no. 10 (2020): 2050146. http://dx.doi.org/10.1142/s0129183120501466.

Pełny tekst źródła
Streszczenie:
We present Star–Triangle Relations (STRs), a Mathematica® package designed to solve Feynman diagrams by means of the method of uniqueness in any Euclidean space-time dimension. The method of uniqueness is a powerful technique to solve multi-loop Feynman integrals in theories with conformal symmetry imposing some relations between the powers of propagators and the space-time dimension. In our algorithm, we include both identities for scalar and Yukawa type integrals. The package provides a graphical environment in which it is possible to draw the desired diagram with the mouse input and a set o
Style APA, Harvard, Vancouver, ISO itp.
7

Kastening, Boris, and Hagen Kleinert. "Efficient algorithm for perturbative calculation of multi-loop Feynman integrals." Physics Letters A 269, no. 1 (2000): 50–54. http://dx.doi.org/10.1016/s0375-9601(00)00199-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Baikov, P. A. "A practical criterion of irreducibility of multi-loop Feynman integrals." Physics Letters B 634, no. 2-3 (2006): 325–29. http://dx.doi.org/10.1016/j.physletb.2006.01.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goode, Jae, Franz Herzog, and Sam Teale. "OPITeR: A program for tensor reduction of multi-loop Feynman integrals." Computer Physics Communications 312 (July 2025): 109606. https://doi.org/10.1016/j.cpc.2025.109606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jurčišinová, E., and M. Jurčišin. "A general formula for analytic reduction of multi-loop tensor Feynman integrals." Physics Letters B 692, no. 1 (2010): 57–60. http://dx.doi.org/10.1016/j.physletb.2010.07.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Multi-loop Feynman integrals"

1

Meyer, Christoph. "Algorithmic transformation of multi-loop Feynman integrals to a canonical basis." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18763.

Pełny tekst źródła
Streszczenie:
Die Auswertung von Mehrschleifen-Feynman-Integralen ist eine der größten Herausforderungen bei der Berechnung präziser theoretischer Vorhersagen für die am LHC gemessenen Wirkungsquerschnitte. In den vergangenen Jahren hat sich die Nutzung von Differentialgleichungen bei der Berechnung von Feynman-Integralen als sehr erfolgreich erwiesen. Es wurde dabei beobachtet, dass die von den Feynman-Integralen erfüllte Differentialgleichung oftmals in eine sogenannte kanonische Form transformiert werden kann, welche die Integration der Differentialgleichung mittels iterierter Integrale wesentlich verein
Style APA, Harvard, Vancouver, ISO itp.
2

Meyer, Christoph [Verfasser], Peter [Gutachter] Uwer, Dirk [Gutachter] Kreimer, and Stefan [Gutachter] Weinzierl. "Algorithmic transformation of multi-loop Feynman integrals to a canonical basis / Christoph Meyer ; Gutachter: Peter Uwer, Dirk Kreimer, Stefan Weinzierl." Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182540457/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Schubert-Mielnik, Ulrich Verfasser], Wolfgang F. L. [Akademischer Betreuer] [Gutachter] Hollik, and A. [Gutachter] [Vairo. "Differential Equations and the Magnus Exponential for multi-loop multi-scale Feynman Integrals / Ulrich Schubert-Mielnik. Betreuer: Wolfgang F. L. Hollik. Gutachter: Antonio Vairo ; Wolfgang F. L. Hollik." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1110014708/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Primo, Amedeo. "Cutting Feynman Amplitudes: from Adaptive Integrand Decomposition to Differential Equations on Maximal Cut." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426809.

Pełny tekst źródła
Streszczenie:
In this thesis we discuss, within the framework of the Standard Model (SM) of particle physics, advanced methods for the computation of scattering amplitudes at higher-order in perturbation theory. We offer a new insight into the role played by the unitarity of scattering amplitudes in the theoretical understanding and in the computational simplification of multi-loop calculations, at both the algebraic and the analytical level. On the algebraic side, generalized unitarity can be used, within the integrand reduction method, to express the integrand associated to a multi-loop amplitude as a su
Style APA, Harvard, Vancouver, ISO itp.
5

Torres, Bobadilla William Javier. "Generalised Unitarity, Integrand Decomposition, and Hidden properties of QCD Scattering Amplitudes in Dimensional Regularisation." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423251.

Pełny tekst źródła
Streszczenie:
In this thesis, we present new developments for the analytic calculation of tree- and multi-loop level amplitudes. Similarly, we study and extend their analytic properties. We propose a Four-dimensional formulation (FDF) equivalent to the four-dimensional helicity scheme (FDH). In our formulation, particles propagating inside the loop are represented by four dimensional massive internal states regulating the divergences. We provide explicit four-dimensional representations of the polarisation and helicity states of the particles propagating in the loop. Within FDF, we use integrand reduc
Style APA, Harvard, Vancouver, ISO itp.
6

Sarkar, Ratan. "Asymptotic Analysis of Multi-scale, Multi-loop Feynman Diagrams." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5510.

Pełny tekst źródła
Streszczenie:
It is very challenging to solve multi-scale, multi-loop Feynman diagrams analytically. The presence of different kinematic scales makes the computation of Feynman diagrams very difficult, sometimes impossible to get the analytic results. One way to tackle this problem is to consider systematic approximations based on the hierarchies of the scales. The basic idea is to simplify the integral before the integration. The Method of Regions (MoR) is one of the powerful methods for handling the evaluation of multi-scale, multi-loop Feynman diagrams asymptotically. The whole loop momentum domain is d
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Multi-loop Feynman integrals"

1

Marquard, Peter, and Matthias Steinhauser. "Numerical Evaluation of Multi-loop Feynman Integrals." In High Performance Computing in Science and Engineering ´16. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47066-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kurz, Alexander, Peter Marquard, and Matthias Steinhauser. "Numerical Evaluation of Multi-Loop Feynman Integrals." In High Performance Computing in Science and Engineering ´15. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24633-8_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ananthanarayan, B., Abhishek Pal, Sunethra Ramanan, and Ratan Sarkar. "On the Determination of Regions in Multi-scale, Multi-loop Feynman Integrals." In Springer Proceedings in Physics. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2354-8_36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chaubey, Ekta. "Analytic Computation of Multi-loop Feynman Integrals for Higher-order QCD Corrections." In Springer Proceedings in Physics. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0289-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tanasa, Adrian. "Quantum gravity, group field theory (GFT), and combinatorics." In Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.003.0010.

Pełny tekst źródła
Streszczenie:
This chapter is the first chapter of the book dedicated to the study of the combinatorics of various quantum gravity approaches. After a brief introductory section to quantum gravity, we shortly mention the main candidates for a quantum theory of gravity: string theory, loop quantum gravity, and group field theory (GFT), causal dynamical triangulations, matrix models. The next sections introduce some GFT models such as the Boulatov model, the colourable and the multi-orientable model. The saddle point method for some specific GFT Feynman integrals is presented in the fifth section. Finally, some algebraic combinatorics results are presented: definition of an appropriate Conne–Kreimer Hopf algebra describing the combinatorics of the renormalization of a certain tensor GFT model (the so-called Ben Geloun–Rivasseau model) and the use of its Hochschild cohomology for the study of the combinatorial Dyson–Schwinger equation of this specific model.
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Multi-loop Feynman integrals"

1

Zhang, Yang, Janko Boehm, Dominik Bendle, et al. "Module Intersection for the Integration-by-Parts Reduction of Multi-Loop Feynman Integrals." In MathemAmplitudes 2019: Intersection Theory & Feynman Integrals. Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.383.0004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chachamis, Grigorios, Sebastian Buchta, Petros Draggiotis, and Germán Rodrigo. "Attacking one-loop multi-leg Feynman integrals with the Loop-Tree Duality." In XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.265.0067.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Meyer, Christoph. "Evaluating multi-loop Feynman integrals using differential equations: automatizing the transformation to a canonical basis." In Loops and Legs in Quantum Field Theory. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.260.0028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!