Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Multi-loop Feynman integrals.

Artykuły w czasopismach na temat „Multi-loop Feynman integrals”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Multi-loop Feynman integrals”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Smirnov, Vladimir A., and Matthias Steinhauser. "Solving recurrence relations for multi-loop Feynman integrals." Nuclear Physics B 672, no. 1-2 (2003): 199–221. http://dx.doi.org/10.1016/j.nuclphysb.2003.09.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Isaev, A. P. "Multi-loop Feynman integrals and conformal quantum mechanics." Nuclear Physics B 662, no. 3 (2003): 461–75. http://dx.doi.org/10.1016/s0550-3213(03)00393-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Baikov, P. A. "Criterion of irreducibility of multi-loop Feynman integrals." Physics Letters B 474, no. 3-4 (2000): 385–88. http://dx.doi.org/10.1016/s0370-2693(00)00053-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, Yajun. "Wick rotations, Eichler integrals, and multi-loop Feynman diagrams." Communications in Number Theory and Physics 12, no. 1 (2018): 127–92. http://dx.doi.org/10.4310/cntp.2018.v12.n1.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aguilera-Verdugo, José de Jesús, Félix Driencourt-Mangin, Roger José Hernández-Pinto, et al. "A Stroll through the Loop-Tree Duality." Symmetry 13, no. 6 (2021): 1029. http://dx.doi.org/10.3390/sym13061029.

Pełny tekst źródła
Streszczenie:
The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
Style APA, Harvard, Vancouver, ISO itp.
6

Preti, Michelangelo. "STR: A Mathematica package for the method of uniqueness." International Journal of Modern Physics C 31, no. 10 (2020): 2050146. http://dx.doi.org/10.1142/s0129183120501466.

Pełny tekst źródła
Streszczenie:
We present Star–Triangle Relations (STRs), a Mathematica® package designed to solve Feynman diagrams by means of the method of uniqueness in any Euclidean space-time dimension. The method of uniqueness is a powerful technique to solve multi-loop Feynman integrals in theories with conformal symmetry imposing some relations between the powers of propagators and the space-time dimension. In our algorithm, we include both identities for scalar and Yukawa type integrals. The package provides a graphical environment in which it is possible to draw the desired diagram with the mouse input and a set o
Style APA, Harvard, Vancouver, ISO itp.
7

Kastening, Boris, and Hagen Kleinert. "Efficient algorithm for perturbative calculation of multi-loop Feynman integrals." Physics Letters A 269, no. 1 (2000): 50–54. http://dx.doi.org/10.1016/s0375-9601(00)00199-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Baikov, P. A. "A practical criterion of irreducibility of multi-loop Feynman integrals." Physics Letters B 634, no. 2-3 (2006): 325–29. http://dx.doi.org/10.1016/j.physletb.2006.01.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goode, Jae, Franz Herzog, and Sam Teale. "OPITeR: A program for tensor reduction of multi-loop Feynman integrals." Computer Physics Communications 312 (July 2025): 109606. https://doi.org/10.1016/j.cpc.2025.109606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jurčišinová, E., and M. Jurčišin. "A general formula for analytic reduction of multi-loop tensor Feynman integrals." Physics Letters B 692, no. 1 (2010): 57–60. http://dx.doi.org/10.1016/j.physletb.2010.07.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Doncker, E. de, F. Yuasa, and R. Assaf. "Multi-threaded adaptive extrapolation procedure for Feynman loop integrals in the physical region." Journal of Physics: Conference Series 454 (August 12, 2013): 012082. http://dx.doi.org/10.1088/1742-6596/454/1/012082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Motoki, S., H. Daisaka, N. Nakasato, et al. "A development of an accelerator board dedicated for multi-precision arithmetic operations and its application to Feynman loop integrals." Journal of Physics: Conference Series 608 (May 22, 2015): 012011. http://dx.doi.org/10.1088/1742-6596/608/1/012011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Daisaka, H., N. Nakasato, T. Ishikawa, F. Yuasa, and K. Nitadori. "A development of an accelerator board dedicated for multi-precision arithmetic operations and its application to Feynman loop integrals II." Journal of Physics: Conference Series 1085 (September 2018): 052004. http://dx.doi.org/10.1088/1742-6596/1085/5/052004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Loebbert, Florian, and Harshad Mathur. "The Feyn-structure of Yangian symmetry." Journal of High Energy Physics 2025, no. 1 (2025). https://doi.org/10.1007/jhep01(2025)112.

Pełny tekst źródła
Streszczenie:
Abstract Yangian-type differential operators are shown to constrain Feynman integrals beyond the restriction to integrable graphs. In particular, we prove that all position-space Feynman diagrams at tree level feature a Yangian level-one momentum symmetry as long as their external coordinates are distinct. This symmetry is traced back to a set of more elementary bilocal operators, which annihilate the integrals. In dual momentum space, the considered Feynman graphs represent multi-loop integrals without ‘loops of loops’, generalizing for instance the family of so-called train track or train tr
Style APA, Harvard, Vancouver, ISO itp.
15

Winterhalder, Ramon, Vitaly Magerya, Emilio Villa, et al. "Targeting multi-loop integrals with neural networks." SciPost Physics 12, no. 4 (2022). http://dx.doi.org/10.21468/scipostphys.12.4.129.

Pełny tekst źródła
Streszczenie:
Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
Style APA, Harvard, Vancouver, ISO itp.
16

He, Song, Zhenjie Li, Yichao Tang, and Qinglin Yang. "The Wilson-loop d log representation for Feynman integrals." Journal of High Energy Physics 2021, no. 5 (2021). http://dx.doi.org/10.1007/jhep05(2021)052.

Pełny tekst źródła
Streszczenie:
Abstract We introduce and study a so-called Wilson-loop d log representation of certain Feynman integrals for scattering amplitudes in $$ \mathcal{N} $$ N = 4 SYM and beyond, which makes their evaluation completely straightforward. Such a representation was motivated by the dual Wilson loop picture, and it can also be derived by partial Feynman parametrization of loop integrals. We first introduce it for the simplest one-loop examples, the chiral pentagon in four dimensions and the three-mass-easy hexagon in six dimensions, which are represented by two- and three-fold d log integrals that are
Style APA, Harvard, Vancouver, ISO itp.
17

Giroux, Mathieu, and Andrzej Pokraka. "Loop-by-loop differential equations for dual (elliptic) Feynman integrals." Journal of High Energy Physics 2023, no. 3 (2023). http://dx.doi.org/10.1007/jhep03(2023)155.

Pełny tekst źródła
Streszczenie:
Abstract We present a loop-by-loop method for computing the differential equations of Feynman integrals using the recently developed dual form formalism. We give explicit prescriptions for the loop-by-loop fibration of multi-loop dual forms. Then, we test our formalism on a simple, but non-trivial, example: the two-loop three-mass elliptic sunrise family of integrals. We obtain an ε-form differential equation within the correct function space in a sequence of relatively simple algebraic steps. In particular, none of these steps relies on the analysis of q-series. Then, we discuss interesting p
Style APA, Harvard, Vancouver, ISO itp.
18

Bönisch, Kilian, Claude Duhr, Fabian Fischbach, Albrecht Klemm, and Christoph Nega. "Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives." Journal of High Energy Physics 2022, no. 9 (2022). http://dx.doi.org/10.1007/jhep09(2022)156.

Pełny tekst źródła
Streszczenie:
Abstract We provide a comprehensive summary of concepts from Calabi-Yau motives relevant to the computation of multi-loop Feynman integrals. From this we derive several consequences for multi-loop integrals in general, and we illustrate them on the example of multi-loop banana integrals. For example, we show how Griffiths transversality, known from the theory of variation of mixed Hodge structures, leads quite generically to a set of quadratic relations among maximal cut integrals associated to Calabi-Yau motives. These quadratic relations then naturally lead to a compact expression for l-loop
Style APA, Harvard, Vancouver, ISO itp.
19

Dai, Bing-Yan, Zi-Qiang Chen, and Long-Bin Chen. "Analytic results for some types of Feynman integrals at any loop order." Communications in Theoretical Physics, April 23, 2025. https://doi.org/10.1088/1572-9494/adcf7f.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we investigate three types of Feynman integrals up to any loop, including the massless banana integral, the one-mass banana integral, and the massless three-point multi-edge integral. Although these integrals are simple in topology, they are involved in many interesting processes, like the heavy quarks production and decay, as well as the massless quark gluon form factors. By using the one-loop integration formulas recursively, we obtain the analytic results at any loop order. It turns out that the results are quite simple and compact. The calculation method used in thi
Style APA, Harvard, Vancouver, ISO itp.
20

Görges, Lennard, Christoph Nega, Lorenzo Tancredi та Fabian J. Wagner. "On a procedure to derive ϵ-factorised differential equations beyond polylogarithms". Journal of High Energy Physics 2023, № 7 (2023). http://dx.doi.org/10.1007/jhep07(2023)206.

Pełny tekst źródła
Streszczenie:
Abstract In this manuscript, we elaborate on a procedure to derive ϵ-factorised differential equations for multi-scale, multi-loop classes of Feynman integrals that evaluate to special functions beyond multiple polylogarithms. We demonstrate the applicability of our approach to diverse classes of problems, by working out ϵ-factorised differential equations for single- and multi-scale problems of increasing complexity. To start we are reconsidering the well-studied equal-mass two-loop sunrise case, and move then to study other elliptic two-, three- and four-point problems depending on multiple
Style APA, Harvard, Vancouver, ISO itp.
21

Frellesvig, Hjalte, Federico Gasparotto, Stefano Laporta, et al. "Decomposition of Feynman integrals by multivariate intersection numbers." Journal of High Energy Physics 2021, no. 3 (2021). http://dx.doi.org/10.1007/jhep03(2021)027.

Pełny tekst źródła
Streszczenie:
AbstractWe present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, employing multivariate intersection numbers. We discuss a recursive algorithm for the computation of multivariate intersection numbers, and provide three different approaches for a direct decomposition of Feynman integrals, which we dub thestraight decomposition, thebottom-up decomposition, and thetop-down decomposition. These algorithms exploi
Style APA, Harvard, Vancouver, ISO itp.
22

Mandal, Manoj K., and Xiaoran Zhao. "Evaluating multi-loop Feynman integrals numerically through differential equations." Journal of High Energy Physics 2019, no. 3 (2019). http://dx.doi.org/10.1007/jhep03(2019)190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

von Manteuffel, Andreas, Erik Panzer, and Robert M. Schabinger. "A quasi-finite basis for multi-loop Feynman integrals." Journal of High Energy Physics 2015, no. 2 (2015). http://dx.doi.org/10.1007/jhep02(2015)120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

He, Song, Zhenjie Li, Rourou Ma, Zihao Wu, Qinglin Yang, and Yang Zhang. "A study of Feynman integrals with uniform transcendental weights and their symbology." Journal of High Energy Physics 2022, no. 10 (2022). http://dx.doi.org/10.1007/jhep10(2022)165.

Pełny tekst źródła
Streszczenie:
Abstract Multi-loop Feynman integrals are key objects for the high-order correction computations in high energy phenomenology. These integrals with multiple scales may have complicated symbol structures, and we show that twistor geometries of closely related dual conformal integrals shed light on their alphabet and symbol structures. In this paper, first, as a cutting-edge example, we derive the two-loop four-external-mass Feynman integrals with uniform transcendental (UT) weights, based on the latest developments on UT integrals. Then we find that all the symbol letters of these integrals can
Style APA, Harvard, Vancouver, ISO itp.
25

Meyer, Christoph. "Transforming differential equations of multi-loop Feynman integrals into canonical form." Journal of High Energy Physics 2017, no. 4 (2017). http://dx.doi.org/10.1007/jhep04(2017)006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Aguilera-Verdugo, J. Jesús, Roger J. Hernández-Pinto, Germán Rodrigo, German F. R. Sborlini, and William J. Torres Bobadilla. "Causal representation of multi-loop Feynman integrands within the loop-tree duality." Journal of High Energy Physics 2021, no. 1 (2021). http://dx.doi.org/10.1007/jhep01(2021)069.

Pełny tekst źródła
Streszczenie:
Abstract The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topol
Style APA, Harvard, Vancouver, ISO itp.
27

Blümlein, J., M. Saragnese, and C. Schneider. "Hypergeometric structures in Feynman integrals." Annals of Mathematics and Artificial Intelligence, April 3, 2023. http://dx.doi.org/10.1007/s10472-023-09831-8.

Pełny tekst źródła
Streszczenie:
AbstractFor the precision calculations in perturbative Quantum Chromodynamics (QCD) gigantic expressions (several GB in size) in terms of highly complicated divergent multi-loop Feynman integrals have to be calculated analytically to compact expressions in terms of special functions and constants. In this article we derive new symbolic tools to gain large-scale computer understanding in QCD. Here we exploit the fact that hypergeometric structures in single and multiscale Feynman integrals emerge in a wide class of topologies. Using integration-by-parts relations, associated master or scalar in
Style APA, Harvard, Vancouver, ISO itp.
28

Duhr, Claude, Franziska Porkert, Cathrin Semper, and Sven F. Stawinski. "Twisted Riemann bilinear relations and Feynman integrals." Journal of High Energy Physics 2025, no. 3 (2025). https://doi.org/10.1007/jhep03(2025)019.

Pełny tekst źródła
Streszczenie:
Abstract Using the framework of twisted cohomology, we study twisted Riemann bilinear relations (TRBRs) satisfied by multi-loop Feynman integrals and their cuts in dimensional regularisation. After showing how to associate to a given family of Feynman integrals a period matrix whose entries are cuts, we investigate the TRBRs satisfied by this period matrix, its dual and the intersection matrices for twisted cycles and co-cycles. For maximal cuts, the non-relative framework is applicable, and the period matrix and its dual are related in a simple manner. We then find that the TRBRs give rise to
Style APA, Harvard, Vancouver, ISO itp.
29

Guillet, J. Ph, E. Pilon, Y. Shimizu, and M. S. Zidi. "Framework for a novel mixed analytical/numerical approach for the computation of two-loop N-point Feynman diagrams." Progress of Theoretical and Experimental Physics 2020, no. 4 (2020). http://dx.doi.org/10.1093/ptep/ptaa020.

Pełny tekst źródła
Streszczenie:
Abstract A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are “generalised one-loop type” multi-point functions multiplied by simple weighting factors. The final integrations over these two variables are to be performed numerically, whereas the ingredients involved in the integrands, in particular the “generalised one-loop type” functions, are computed analytically. The idea is illustrated on a few examples of scalar three- and four-point functions.
Style APA, Harvard, Vancouver, ISO itp.
30

Dlapa, Christoph, Johannes M. Henn, and Fabian J. Wagner. "An algorithmic approach to finding canonical differential equations for elliptic Feynman integrals." Journal of High Energy Physics 2023, no. 8 (2023). http://dx.doi.org/10.1007/jhep08(2023)120.

Pełny tekst źródła
Streszczenie:
Abstract In recent years, differential equations have become the method of choice to compute multi-loop Feynman integrals. Whenever they can be cast into canonical form, their solution in terms of special functions is straightforward. Recently, progress has been made in understanding the precise canonical form for Feynman integrals involving elliptic polylogarithms. In this article, we make use of an algorithmic approach that proves powerful to find canonical forms for these cases. To illustrate the method, we reproduce several known canonical forms from the literature and present examples whe
Style APA, Harvard, Vancouver, ISO itp.
31

Derkachov, S. E., A. P. Isaev, and L. A. Shumilov. "Ladder and zig-zag Feynman diagrams, operator formalism and conformal triangles." Journal of High Energy Physics 2023, no. 6 (2023). http://dx.doi.org/10.1007/jhep06(2023)059.

Pełny tekst źródła
Streszczenie:
Abstract We develop an operator approach to the evaluation of multiple integrals for multiloop Feynman massless diagrams. A commutative family of graph building operators Hα for ladder diagrams is constructed and investigated. The complete set of eigenfunctions and the corresponding eigenvalues for the operators Hα are found. This enables us to explicitly express a wide class of four-point ladder diagrams and a general two-loop propagator-type master diagram (with arbitrary indices on the lines) as Mellin-Barnes-type integrals. Special cases of these integrals are explicitly evaluated. A certa
Style APA, Harvard, Vancouver, ISO itp.
32

Blümlein, Johannes, and Carsten Schneider. "The SAGEX Review on scattering amplitudes Chapter 4: Multi-loop Feynman integrals." Journal of Physics A: Mathematical and Theoretical, July 12, 2022. http://dx.doi.org/10.1088/1751-8121/ac8086.

Pełny tekst źródła
Streszczenie:
Abstract The analytic integration and simplification of multi-loop Feynman integrals to special functions and constants plays an important role to perform higher order perturbative calculations in the Standard Model of elementary particles. In this survey article the most recent and relevant computer algebra and special function algorithms are presented that are currently used or that may play an important role to perform such challenging precision calculations in the future. They are discussed in the context of analytic zero, single and double scale calculations in the Quantum Field Theories
Style APA, Harvard, Vancouver, ISO itp.
33

Jinno, Ryusuke, Gregor Kälin, Zhengwen Liu, and Henrique Rubira. "Machine learning Post-Minkowskian integrals." Journal of High Energy Physics 2023, no. 7 (2023). http://dx.doi.org/10.1007/jhep07(2023)181.

Pełny tekst źródła
Streszczenie:
Abstract We study a neural network framework for the numerical evaluation of Feynman loop integrals that are fundamental building blocks for perturbative computations of physical observables in gauge and gravity theories. We show that such a machine learning approach improves the convergence of the Monte Carlo algorithm for high-precision evaluation of multi-dimensional integrals compared to traditional algorithms. In particular, we use a neural network to improve the importance sampling. For a set of representative integrals appearing in the computation of the conservative dynamics for a comp
Style APA, Harvard, Vancouver, ISO itp.
34

Heckelbacher, Till, Ivo Sachs, Evgeny Skvortsov, and Pierre Vanhove. "Analytical evaluation of AdS4 Witten diagrams as flat space multi-loop Feynman integrals." Journal of High Energy Physics 2022, no. 8 (2022). http://dx.doi.org/10.1007/jhep08(2022)052.

Pełny tekst źródła
Streszczenie:
Abstract We describe a systematic approach for the evaluation of Witten diagrams for multi-loop scattering amplitudes of a conformally coupled scalar ϕ4-theory in Euclidean AdS4, by recasting the Witten diagrams as flat space Feynman integrals. We derive closed form expressions for the anomalous dimensions for all double-trace operators up to the second order in the coupling constant. We explain the relation between the flat space unitarity methods and the discontinuities of the short distance expansion on the boundary of Witten diagrams.
Style APA, Harvard, Vancouver, ISO itp.
35

Broedel, Johannes, Claude Duhr, and Nils Matthes. "Meromorphic modular forms and the three-loop equal-mass banana integral." Journal of High Energy Physics 2022, no. 2 (2022). http://dx.doi.org/10.1007/jhep02(2022)184.

Pełny tekst źródła
Streszczenie:
Abstract We consider a class of differential equations for multi-loop Feynman integrals which can be solved to all orders in dimensional regularisation in terms of iterated integrals of meromorphic modular forms. We show that the subgroup under which the modular forms transform can naturally be identified with the monodromy group of a certain second-order differential operator. We provide an explicit decomposition of the spaces of modular forms into a direct sum of total derivatives and a basis of modular forms that cannot be written as derivatives of other functions, thereby generalising a re
Style APA, Harvard, Vancouver, ISO itp.
36

Duhr, Claude, Sara Maggio, Christoph Nega, Benjamin Sauer, Lorenzo Tancredi, and Fabian J. Wagner. "Aspects of canonical differential equations for Calabi-Yau geometries and beyond." Journal of High Energy Physics 2025, no. 6 (2025). https://doi.org/10.1007/jhep06(2025)128.

Pełny tekst źródła
Streszczenie:
Abstract We show how a method to construct canonical differential equations for multi-loop Feynman integrals recently introduced by some of the authors can be extended to cases where the associated geometry is of Calabi-Yau type and even beyond. This can be achieved by supplementing the method with information from the mixed Hodge structure of the underlying geometry. We apply these ideas to specific classes of integrals whose associated geometry is a one-parameter family of Calabi-Yau varieties, and we argue that the method can always be successfully applied to those cases. Moreover, we perfo
Style APA, Harvard, Vancouver, ISO itp.
37

Anselmi, Damiano. "Diagrammar of physical and fake particles and spectral optical theorem." Journal of High Energy Physics 2021, no. 11 (2021). http://dx.doi.org/10.1007/jhep11(2021)030.

Pełny tekst źródła
Streszczenie:
Abstract We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman iϵ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces
Style APA, Harvard, Vancouver, ISO itp.
38

Aguilera-Verdugo, J. Jesús, Roger J. Hernández-Pinto, Germán Rodrigo, German F. R. Sborlini, and William J. Torres Bobadilla. "Mathematical properties of nested residues and their application to multi-loop scattering amplitudes." Journal of High Energy Physics 2021, no. 2 (2021). http://dx.doi.org/10.1007/jhep02(2021)112.

Pełny tekst źródła
Streszczenie:
Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residue
Style APA, Harvard, Vancouver, ISO itp.
39

Goode, Jae, Franz Herzog, Anthony Kennedy, Sam Teale, and Jos Vermaseren. "Tensor reduction for Feynman integrals with Lorentz and spinor indices." Journal of High Energy Physics 2024, no. 11 (2024). http://dx.doi.org/10.1007/jhep11(2024)123.

Pełny tekst źródła
Streszczenie:
Abstract We present an efficient graphical approach to construct projectors for the tensor reduction of multi-loop Feynman integrals with both Lorentz and spinor indices in D dimensions. An ansatz for the projectors is constructed making use of its symmetry properties via an orbit partition formula. The graphical approach allows to identify and enumerate the orbits in each case. For the case without spinor indices we find a 1 to 1 correspondence between orbits and integer partitions describing the cycle structure of certain bi-chord graphs. This leads to compact combinatorial formulae for the
Style APA, Harvard, Vancouver, ISO itp.
40

Fael, Matteo, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. "A semi-analytic method to compute Feynman integrals applied to four-loop corrections to the $$ \overline{\mathrm{MS}} $$-pole quark mass relation." Journal of High Energy Physics 2021, no. 9 (2021). http://dx.doi.org/10.1007/jhep09(2021)152.

Pełny tekst źródła
Streszczenie:
Abstract We describe a method to numerically compute multi-loop integrals, depending on one dimensionless parameter x and the dimension d, in the whole kinematic range of x. The method is based on differential equations, which, however, do not require any special form, and series expansions around singular and regular points. This method provides results well suited for fast numerical evaluation and sufficiently precise for phenomenological applications. We apply the approach to four-loop on-shell integrals and compute the coefficient function of eight colour structures in the relation between
Style APA, Harvard, Vancouver, ISO itp.
41

Slepian, Zachary. "On Decoupling the Integrals of Cosmological Perturbation Theory." Monthly Notices of the Royal Astronomical Society, June 20, 2020. http://dx.doi.org/10.1093/mnras/staa1789.

Pełny tekst źródła
Streszczenie:
Abstract Perturbation theory (PT) is often used to model statistical observables capturing the translation and rotation-invariant information in cosmological density fields. PT produces higher-order corrections by integration over linear statistics of the density fields weighted by kernels resulting from recursive solution of the fluid equations. These integrals quickly become high-dimensional and naively require increasing computational resources the higher the order of the corrections. Here we show how to decouple the integrands that often produce this issue, enabling PT corrections to be co
Style APA, Harvard, Vancouver, ISO itp.
42

He, Song, Zhenjie Li, Yichao Tang, and Qinglin Yang. "Bootstrapping octagons in reduced kinematics from A2 cluster algebras." Journal of High Energy Physics 2021, no. 10 (2021). http://dx.doi.org/10.1007/jhep10(2021)084.

Pełny tekst źródła
Streszczenie:
Abstract Multi-loop scattering amplitudes/null polygonal Wilson loops in $$ \mathcal{N} $$ N = 4 super-Yang-Mills are known to simplify significantly in reduced kinematics, where external legs/edges lie in an 1 + 1 dimensional subspace of Minkowski spacetime (or boundary of the AdS3 subspace). Since the edges of a 2n-gon with even and odd labels go along two different null directions, the kinematics is reduced to two copies of G(2, n)/T ∼ An−3. In the simplest octagon case, we conjecture that all loop amplitudes and Feynman integrals are given in terms of two overlapping A2 functions (a specia
Style APA, Harvard, Vancouver, ISO itp.
43

Boehm, Janko, Marcel Wittmann, Zihao Wu, Yingxuan Xu, and Yang Zhang. "IBP reduction coefficients made simple." Journal of High Energy Physics 2020, no. 12 (2020). http://dx.doi.org/10.1007/jhep12(2020)054.

Pełny tekst źródła
Streszczenie:
Abstract We present an efficient method to shorten the analytic integration-by-parts (IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop an improved version of Leinartas’ multivariate partial fraction algorithm, and provide a modern implementation based on the computer algebra system Singular. Furthermore, we observe that for an integral basis with uniform transcendental (UT) weights, the denominators of IBP reduction coefficients with respect to the UT basis are either symbol letters or polynomials purely in the spacetime dimension D. With a UT basis, th
Style APA, Harvard, Vancouver, ISO itp.
44

Chen, Jiaqi, Bo Feng, and Yi-Xiao Tao. "Multivariate hypergeometric solutions of cosmological (dS) correlators by d log-form differential equations." Journal of High Energy Physics 2025, no. 3 (2025). https://doi.org/10.1007/jhep03(2025)075.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we give the analytic expression for the homogeneous part of solutions of arbitrary tree-level cosmological correlators, including massive propagators and time-derivative interaction cases. The solutions are given in the form of multivariate hypergeometric functions. It is achieved by two steps. Firstly, we indicate the factorization of the homogeneous part of solutions, i.e., the homogeneous part of solutions of multiple vertices is the product of the solutions of the single vertex. Secondly, we give the solution to the d log-form differential equations of arbitrary sin
Style APA, Harvard, Vancouver, ISO itp.
45

Belitsky, A. V., and V. A. Smirnov. "Near mass-shell double boxes." Journal of High Energy Physics 2024, no. 5 (2024). http://dx.doi.org/10.1007/jhep05(2024)155.

Pełny tekst źródła
Streszczenie:
Abstract Two-loop multi-leg form factors in off-shell kinematics require knowledge of planar and nonplanar double box Feynman diagrams with massless internal propagators. These are complicated functions of Mandelstam variables and external particle virtualities. The latter serve as regulators of infrared divergences, thus making these observables finite in four space-time dimensions. In this paper, we use the method of canonical differential equations for the calculation of (non)planar double box integrals in the near mass-shell kinematical regime, i.e., where virtualities of external particle
Style APA, Harvard, Vancouver, ISO itp.
46

Niarchos, V., C. Papageorgakis, A. Pini, and E. Pomoni. "(Mis-)matching type-B anomalies on the Higgs branch." Journal of High Energy Physics 2021, no. 1 (2021). http://dx.doi.org/10.1007/jhep01(2021)106.

Pełny tekst źródła
Streszczenie:
Abstract Building on [1], we uncover new properties of type-B conformal anomalies for Coulomb-branch operators in continuous families of 4D $$ \mathcal{N} $$ N = 2 SCFTs. We study a large class of such anomalies on the Higgs branch, where conformal symmetry is spontaneously broken, and compare them with their counterpart in the CFT phase. In Lagrangian the- ories, the non-perturbative matching of the anomalies can be determined with a weak coupling Feynman diagram computation involving massive multi-loop banana integrals. We extract the part corresponding to the anomalies of interest. Our calc
Style APA, Harvard, Vancouver, ISO itp.
47

Henn, Johannes, and Prashanth Raman. "Positivity properties of scattering amplitudes." Journal of High Energy Physics 2025, no. 4 (2025). https://doi.org/10.1007/jhep04(2025)150.

Pełny tekst źródła
Streszczenie:
Abstract We investigate positivity properties in quantum field theory (QFT). We provide evidence, and in some case proofs, that many building blocks of scattering amplitudes, and in some cases the full amplitudes, satisfy an infinite number of positivity conditions: the functions, as well as all their signed derivatives, are non-negative in a specified kinematic region. Such functions are known as completely monotonic (CM) in the mathematics literature. A powerful way to certify complete monotonicity is via integral representations. We thus show that it applies to planar and non-planar Feynman
Style APA, Harvard, Vancouver, ISO itp.
48

Duhr, Claude, Albrecht Klemm, Florian Loebbert, Christoph Nega, and Franziska Porkert. "Geometry from integrability: multi-leg fishnet integrals in two dimensions." Journal of High Energy Physics 2024, no. 7 (2024). http://dx.doi.org/10.1007/jhep07(2024)008.

Pełny tekst źródła
Streszczenie:
Abstract We generalise the geometric analysis of square fishnet integrals in two dimensions to the case of hexagonal fishnets with three-point vertices. Our results support the conjecture that fishnet Feynman integrals in two dimensions, together with their associated geometry, are completely fixed by their Yangian and permutation symmetries. As a new feature for the hexagonal fishnets, the star-triangle identity introduces an ambiguity in the graph representation of a given Feynman integral. This translates into a map between different geometric interpretations attached to a graph. We demonst
Style APA, Harvard, Vancouver, ISO itp.
49

Bargieła, Piotr. "Integrated unitarity for scattering amplitudes and the four-loop ladder Feynman integral." Journal of High Energy Physics 2025, no. 5 (2025). https://doi.org/10.1007/jhep05(2025)004.

Pełny tekst źródła
Streszczenie:
Abstract We consider multi-loop scattering amplitudes in dimensionally regularized Quantum Field Theory. We present an algorithmic way of reconstructing them from their cuts. We rely on combining modern computational methods with formal developments in discontinuities and dispersion relations. Our approach extends Generalized Unitarity by constraining not only the integrand of the amplitude but also its full integrated form. We validated our method by reproducing the four-gluon amplitude in two-loop massless Quantum Chromodynamics. Moreover, since our approach improves the performance of the c
Style APA, Harvard, Vancouver, ISO itp.
50

Laddha, Alok, and Amit Suthar. "Positive geometries, corolla polynomial and gauge theory amplitudes." Journal of High Energy Physics 2025, no. 2 (2025). https://doi.org/10.1007/jhep02(2025)071.

Pełny tekst źródła
Streszczenie:
Abstract Arkani-Hamed, Bai, He and Yan (ABHY) discovered a convex realisation of the associahedron whose combinatorial and geometric structure generates tree-level amplitudes in bi-adjoint scalar theory. ABHY associahedron of dimension k determines a unique meromorphic k-form in the kinematic space of Mandelstam invariants which is k + 3 point tree-level amplitude in bi-adjoint ϕ 3 theory. As ABHY further proved in [1], while the color-ordered amplitude is a form in the kinematic space, the (double) color-dressed amplitudes are scalars obtained by the so called color-form duality. Color-form d
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!