Artykuły w czasopismach na temat „Multidrug nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Multidrug nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
& MAHMOOD, HAMID. "THE SYNERGISTIC EFFECT OF GOLD NANOPARTICLE LOADED WITH CEFTAZIDIUM ANTIBIOTIC AGAINST MULTIDRUG ERSISTANCE PSEUDOMONAS AERUGINOSA". IRAQI JOURNAL OF AGRICULTURAL SCIENCES 52, nr 4 (22.08.2021): 828–35. http://dx.doi.org/10.36103/ijas.v52i4.1391.
Pełny tekst źródłaHuq, Md Amdadul, Md Ashrafudoulla, Md Anowar Khasru Parvez, Sri Renukadevi Balusamy, Md Mizanur Rahman, Ji Hyung Kim i Shahina Akter. "Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review". Polymers 14, nr 23 (4.12.2022): 5302. http://dx.doi.org/10.3390/polym14235302.
Pełny tekst źródłaShair Mohammad, Imran, Birendra Chaurasiya, Xuan Yang, Chuchu Lin, Hehui Rong i Wei He. "Homotype-Targeted Biogenic Nanoparticles to Kill Multidrug-Resistant Cancer Cells". Pharmaceutics 12, nr 10 (9.10.2020): 950. http://dx.doi.org/10.3390/pharmaceutics12100950.
Pełny tekst źródłaAbd. Alaameri, Sally K., Huda S. A. Al-Hayanni i Labeeb A. K. Al-Zubaidi. "Antibacterial and anti-biofilm properties of biosynthesized Silver nanoparticles using Sumac (Rhus coriaria L.) extracts against some pathogenic bacteria". Sumer 3 8, CSS 3 (15.10.2023): 1–15. http://dx.doi.org/10.21931/rb/css/2023.08.03.53.
Pełny tekst źródłaRoszczenko, Piotr, Olga Klaudia Szewczyk, Robert Czarnomysy, Krzysztof Bielawski i Anna Bielawska. "Biosynthesized Gold, Silver, Palladium, Platinum, Copper, and Other Transition Metal Nanoparticles". Pharmaceutics 14, nr 11 (25.10.2022): 2286. http://dx.doi.org/10.3390/pharmaceutics14112286.
Pełny tekst źródłaShrivastava, A., RK Singh, PK Tyagi i D. Gore. "Synthesis of Zinc Oxide, Titanium Dioxide and Magnesium Dioxide Nanoparticles and Their Prospective in Pharmaceutical and Biotechnological Applications". Journal of Biomedical Research & Environmental Sciences 2, nr 1 (11.01.2021): 011–20. http://dx.doi.org/10.37871/jbres1180.
Pełny tekst źródłaZaineb, Tayyaba, Bushra Uzair, Waleed Y. Rizg, Waleed S. Alharbi, Hala M. Alkhalidi, Khaled M. Hosny, Barkat Ali Khan, Asma Bano, Mohammed Alissa i Nazia Jamil. "Synthesis and Characterization of Calcium Alginate-Based Microspheres Entrapped with TiO2 Nanoparticles and Cinnamon Essential Oil Targeting Clinical Staphylococcus aureus". Pharmaceutics 14, nr 12 (9.12.2022): 2764. http://dx.doi.org/10.3390/pharmaceutics14122764.
Pełny tekst źródłaAbdelhamid, Mohamed A. A., Mi-Ran Ki, Amer Ali Abd Abd El-Hafeez, Ryeo Gang Son i Seung Pil Pack. "Tailored Functionalized Protein Nanocarriers for Cancer Therapy: Recent Developments and Prospects". Pharmaceutics 15, nr 1 (3.01.2023): 168. http://dx.doi.org/10.3390/pharmaceutics15010168.
Pełny tekst źródłaAhmed, Faraidun A., Khadijakhalil M. Barzani i Payman A. Hamasaeed. "Antibacterial and Wound Healing Assessment of Silver Nanoparticles against Multidrug-Resistant Klebsiella variicola". Cihan University-Erbil Scientific Journal 8, nr 2 (20.08.2024): 49–55. http://dx.doi.org/10.24086/cuesj.v8n2y2024.pp49-55.
Pełny tekst źródłaChidambaram, Moorthi, R. Manavalan i K. Kathiresan. "Nanotherapeutics to Overcome Conventional Cancer Chemotherapy Limitations". Journal of Pharmacy & Pharmaceutical Sciences 14, nr 1 (16.02.2011): 67. http://dx.doi.org/10.18433/j30c7d.
Pełny tekst źródłaBobai, M., L. Danjuma i N. M. Sani. "In vitro antibacterial activity of biologically synthesised silver nanoparticles using Terminalia avicenoides extracts against multidrug resistant Staphylococcus aureus strains". Journal of Phytopharmacology 11, nr 2 (10.04.2022): 64–74. http://dx.doi.org/10.31254/phyto.2022.11203.
Pełny tekst źródłaEl Semary, Nermin A., i Esam M. Bakir. "Multidrug-Resistant Bacterial Pathogens and Public Health: The Antimicrobial Effect of Cyanobacterial-Biosynthesized Silver Nanoparticles". Antibiotics 11, nr 8 (26.07.2022): 1003. http://dx.doi.org/10.3390/antibiotics11081003.
Pełny tekst źródłaShaikh, Ahson Jabbar, Nargis Aman i Muhammad Arfat Yameen. "A new methodology for simultaneous comparison and optimization between nanoparticles and their drug conjugates against various multidrug-resistant bacterial strains". Asian Biomedicine 13, nr 4 (31.03.2020): 149–62. http://dx.doi.org/10.1515/abm-2019-0054.
Pełny tekst źródłaDormont, Flavio, Romain Brusini, Catherine Cailleau, Franceline Reynaud, Arnaud Peramo, Amandine Gendron, Julie Mougin, Françoise Gaudin, Mariana Varna i Patrick Couvreur. "Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents". Science Advances 6, nr 23 (27.04.2020): eaaz5466. http://dx.doi.org/10.1126/sciadv.aaz5466.
Pełny tekst źródłaKhan, Muhammad Muzamil, i Vladimir P. Torchilin. "Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors". Cancers 14, nr 17 (26.08.2022): 4123. http://dx.doi.org/10.3390/cancers14174123.
Pełny tekst źródłaAghamiri, Shahin, Keyvan Fallah Mehrjardi, Sasan Shabani, Mahsa Keshavarz-Fathi, Saeed Kargar i Nima Rezaei. "Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy?" Nanomedicine 14, nr 15 (sierpień 2019): 2083–100. http://dx.doi.org/10.2217/nnm-2018-0379.
Pełny tekst źródłaNikhil, Vadlamudi, Ayla Sanjay, Mohammad Aftab Khizer, Mohd Asif, Syed Shah MinAllah Alvi i Chand Pasha. "Green Synthesis of Nanomaterials with Phytochemicals for Treating Multidrug Resistant Bacteria". Journal of Advances in Biology & Biotechnology 27, nr 9 (5.09.2024): 1152–61. http://dx.doi.org/10.9734/jabb/2024/v27i91386.
Pełny tekst źródłaNuti, Silvia, Adrián Fernández-Lodeiro, Joana Galhano, Elisabete Oliveira, Maria Paula Duarte, José Luis Capelo-Martínez, Carlos Lodeiro i Javier Fernández-Lodeiro. "Tailoring Mesoporous Silica-Coated Silver Nanoparticles and Polyurethane-Doped Films for Enhanced Antimicrobial Applications". Nanomaterials 14, nr 5 (2.03.2024): 462. http://dx.doi.org/10.3390/nano14050462.
Pełny tekst źródłaHemmati, Jaber, Mehdi Azizi, Babak Asghari i Mohammad Reza Arabestani. "Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles)". Canadian Journal of Infectious Diseases and Medical Microbiology 2023 (22.07.2023): 1–17. http://dx.doi.org/10.1155/2023/8854311.
Pełny tekst źródłaAlnashiri, Hassien M., Fahad M. Aldakheel, Abdulkarim S. Binshaya, Nahed S. Alharthi i Musthaq Ahmed. "Antimicrobial Analysis of Biosynthesized Lectin-Conjugated Gold Nanoparticles". Adsorption Science & Technology 2022 (31.03.2022): 1–7. http://dx.doi.org/10.1155/2022/8187260.
Pełny tekst źródłaNiño-Martínez, Nereyda, Marco Felipe Salas Orozco, Gabriel-Alejandro Martínez-Castañón, Fernando Torres Méndez i Facundo Ruiz. "Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles". International Journal of Molecular Sciences 20, nr 11 (8.06.2019): 2808. http://dx.doi.org/10.3390/ijms20112808.
Pełny tekst źródłaHayat, Palwasha, Ibrar Khan, Aneela Rehman, Tayyaba Jamil, Azam Hayat, Mujaddad Ur Rehman, Najeeb Ullah i in. "Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria". Molecules 28, nr 2 (7.01.2023): 637. http://dx.doi.org/10.3390/molecules28020637.
Pełny tekst źródłaHan, Ning, Yue Liu, Xin Liu, Pengyue Li, Yang Lu, Shouying Du i Kai Wu. "The Controlled Preparation of a Carrier-Free Nanoparticulate Formulation Composed of Curcumin and Piperine Using High-Gravity Technology". Pharmaceutics 16, nr 6 (14.06.2024): 808. http://dx.doi.org/10.3390/pharmaceutics16060808.
Pełny tekst źródłaChen, Jiacheng, Xiaojing Chen, Liang Chen, Xiangxiang Luo, Chunyu Zhuang i Jincai Wu. "Drug resistance reversal and survivin action mechanism of Fe3O4 magnetic nanoparticles on hepatocellular carcinoma cells". Materials Express 12, nr 9 (1.09.2022): 1174–81. http://dx.doi.org/10.1166/mex.2022.2260.
Pełny tekst źródłaShawuti, Shalima, Chasan Bairam, Ahmet Beyatlı, İshak Afşin Kariper, Isık Neslişah Korkut, Zerrin Aktaş, Mustafa Oral Öncül i Serap Erdem Kuruca. "Green synthesis and characterization of silver and iron nanoparticles using Nerium oleander extracts and their antibacterial and anticancer activities". Plant Introduction 91-92 (28.11.2021): 36–49. http://dx.doi.org/10.46341/pi2021010.
Pełny tekst źródłaImran, Mohammad, Saurav Kumar Jha, Nazeer Hasan, Areeba Insaf, Jitendra Shrestha, Jesus Shrestha, Hari Prasad Devkota i in. "Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems". Pharmaceutics 14, nr 3 (8.03.2022): 586. http://dx.doi.org/10.3390/pharmaceutics14030586.
Pełny tekst źródłaHetta, Helal F., Yasmin N. Ramadan, Israa M. S. Al-Kadmy, Noura H. Abd Ellah, Lama Shbibe i Basem Battah. "Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections". Pathogens 12, nr 8 (13.08.2023): 1033. http://dx.doi.org/10.3390/pathogens12081033.
Pełny tekst źródłaPieretti, Joana Claudio, Milena Trevisan Pelegrino, Ariane Boudier i Amedea Barozzi Seabra. "Recent progress in the toxicity of nitric oxide-releasing nanomaterials". Materials Advances 2, nr 23 (2021): 7530–42. http://dx.doi.org/10.1039/d1ma00532d.
Pełny tekst źródłaBrowning, Lauren M., Kerry J. Lee, Pavan K. Cherukuri, Prakash D. Nallathamby, Seth Warren, Jean-Michel Jault i Xiao-Hong Nancy Xu. "Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells". RSC Advances 6, nr 43 (2016): 36794–802. http://dx.doi.org/10.1039/c6ra05895g.
Pełny tekst źródłaHuang, Jianling, Xiuwen Hong, Yunxiang Lv, Yueyue Wang, Kexing Han, Chenghua Zhu i Lixu Xie. "Armored polymyxin B: a nanosystem for combating multidrug-resistant Gram-negative bacilli". RSC Advances 14, nr 53 (2024): 39700–39707. https://doi.org/10.1039/d4ra07577c.
Pełny tekst źródłaChen, Minghui, Xiaoxu Yu, Qianyu Huo, Qin Yuan, Xue Li, Chen Xu i Huijing Bao. "Biomedical Potentialities of Silver Nanoparticles for Clinical Multiple Drug-Resistant Acinetobacter baumannii". Journal of Nanomaterials 2019 (4.02.2019): 1–7. http://dx.doi.org/10.1155/2019/3754018.
Pełny tekst źródłaLi, Wenxi, Yongchun Li, Pengchao Sun, Nan Zhang, Yidan Zhao, Shangshang Qin i Yongxing Zhao. "Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy". RSC Advances 10, nr 64 (2020): 38746–54. http://dx.doi.org/10.1039/d0ra05640e.
Pełny tekst źródłaFeng, Wanting, Mingzhu Zong, Li Wan, Xiaojuan Yu i Weiyong Yu. "pH/redox sequentially responsive nanoparticles with size shrinkage properties achieve deep tumor penetration and reversal of multidrug resistance". Biomaterials Science 8, nr 17 (2020): 4767–78. http://dx.doi.org/10.1039/d0bm00695e.
Pełny tekst źródłaWang, Jianxi, Ning Li, Lei Cao, Chao Gao, Yan Zhang, Qizhi Shuai, Jinghui Xie, Kui Luo, Jun Yang i Zhongwei Gu. "DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells". Journal of Materials Chemistry B 8, nr 6 (2020): 1157–70. http://dx.doi.org/10.1039/c9tb02130b.
Pełny tekst źródłaPawar, Kranti, Ramanlal Kachave, Madhuri Kanawade i Vinayak Zagre. "A Review on Nanoparticles Drug Delivery System". Journal of Drug Delivery and Therapeutics 11, nr 4 (15.07.2021): 101–4. http://dx.doi.org/10.22270/jddt.v11i4.4865.
Pełny tekst źródłaBeyth, Nurit, Yael Houri-Haddad, Avi Domb, Wahid Khan i Ronen Hazan. "Alternative Antimicrobial Approach: Nano-Antimicrobial Materials". Evidence-Based Complementary and Alternative Medicine 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/246012.
Pełny tekst źródłaMajerník, Martin, Rastislav Jendželovský, Jana Vargová, Zuzana Jendželovská i Peter Fedoročko. "Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer". Pharmaceutics 14, nr 5 (17.05.2022): 1075. http://dx.doi.org/10.3390/pharmaceutics14051075.
Pełny tekst źródłaNisha D. Masane, Arti S. Rathod, Vaibhav G. Akhand, Vinayak A. Katekar i Swati P. Deshmukh. "Nanoparticles based drug delivery system for cancer therapy". GSC Advanced Research and Reviews 22, nr 1 (30.01.2025): 223–37. https://doi.org/10.30574/gscarr.2025.22.1.0014.
Pełny tekst źródłaManoharan, Ranjith Kumar, Prakash Gangadaran, Sivasankaran Ayyaru, Byeong-Cheol Ahn i Young-Ho Ahn. "Self-healing functionalization of sulfonated hafnium oxide and copper oxide nanocomposite for effective biocidal control of multidrug-resistant bacteria". New Journal of Chemistry 45, nr 21 (2021): 9506–17. http://dx.doi.org/10.1039/d1nj00323b.
Pełny tekst źródłaZeng, Guoqing, Nan Liao, Ning Li, Yi Su i Jiangshun Song. "Curcumin-loaded nanoparticles reversed radiotherapy-triggered enhancement of MDR1 expression of CNE-2 cells in nasopharyngeal carcinoma". Materials Express 12, nr 7 (1.07.2022): 948–55. http://dx.doi.org/10.1166/mex.2022.2222.
Pełny tekst źródłaSlavin, Yael N., Kristina Ivanova, Javier Hoyo, Ilana Perelshtein, Gethin Owen, Anne Haegert, Yen-Yi Lin i in. "Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria". ACS Applied Materials & Interfaces 13, nr 19 (4.05.2021): 22098–109. http://dx.doi.org/10.1021/acsami.0c16921.
Pełny tekst źródłaZhang, Qiu, i Fei Li. "Combating P-glycoprotein-Mediated Multidrug Resistance Using Therapeutic Nanoparticles". Current Pharmaceutical Design 19, nr 37 (1.09.2013): 6655–66. http://dx.doi.org/10.2174/1381612811319370009.
Pełny tekst źródłaHanh, Truong Thi, Nguyen Thi Thu, Nguyen Quoc Hien, Pham Ngoc An, Truong Thi Kieu Loan i Phan Thi Hoa. "Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria". Radiation Physics and Chemistry 121 (kwiecień 2016): 87–92. http://dx.doi.org/10.1016/j.radphyschem.2015.12.024.
Pełny tekst źródłaBaeza, Alejandro, Eduardo Guisasola, Eduardo Ruiz-Hernández i María Vallet-Regí. "Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles". Chemistry of Materials 24, nr 3 (27.01.2012): 517–24. http://dx.doi.org/10.1021/cm203000u.
Pełny tekst źródłaRai, M. K., S. D. Deshmukh, A. P. Ingle i A. K. Gade. "Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria". Journal of Applied Microbiology 112, nr 5 (28.03.2012): 841–52. http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x.
Pełny tekst źródłaLara, Humberto H., Nilda V. Ayala-Núñez, Liliana del Carmen Ixtepan Turrent i Cristina Rodríguez Padilla. "Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria". World Journal of Microbiology and Biotechnology 26, nr 4 (22.10.2009): 615–21. http://dx.doi.org/10.1007/s11274-009-0211-3.
Pełny tekst źródłaDoudi, Monir, Marziyeh Karami i Nour Amirmozafari. "Bacterial effect of silver nanoparticles against multidrug-resistant bacteria". Clinical Biochemistry 44, nr 13 (wrzesień 2011): S223. http://dx.doi.org/10.1016/j.clinbiochem.2011.08.984.
Pełny tekst źródłaPancholi, Rashmi. "Different Aspects of Nano-material and Biodegradable Polymers for Cancer Diagnosis and Treatment: A Review". INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING & APPLIED SCIENCES 10, nr 4 (30.12.2022): 30–42. http://dx.doi.org/10.55083/irjeas.2022.v10i04006.
Pełny tekst źródłaFoglizzo, Valentina, i Serena Marchiò. "Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy". Cancers 14, nr 10 (17.05.2022): 2473. http://dx.doi.org/10.3390/cancers14102473.
Pełny tekst źródłaLv, Xianmei, Qiusheng Guo i Liming Xu. "Study on the Chemotherapeutic Effect and Mechanism of Doxorubicin Hydrochloride on Drug-Resistant Gastric Cancer Cell Lines Using Metal-Organic Framework Fluorescent Nanoparticles as Carriers". Journal of Nanomaterials 2020 (17.12.2020): 1–14. http://dx.doi.org/10.1155/2020/6681749.
Pełny tekst źródła