Artykuły w czasopismach na temat „Muscle cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Muscle cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Griffin, D. M., H. M. Hudson, A. Belhaj-Saïf, B. J. McKiernan, and P. D. Cheney. "Do Corticomotoneuronal Cells Predict Target Muscle EMG Activity?" Journal of Neurophysiology 99, no. 3 (2008): 1169–986. http://dx.doi.org/10.1152/jn.00906.2007.
Pełny tekst źródłaBecker, S., G. Pasca, D. Strumpf, L. Min, and T. Volk. "Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles." Development 124, no. 13 (1997): 2615–22. http://dx.doi.org/10.1242/dev.124.13.2615.
Pełny tekst źródłaReyes, Morayma, and Jeffrey S. Chamberlain. "Perivascular CD45−:Sca-1+:CD34− Cells Are Derived from Bone Marrow Cells and Participate in Dystrophic Skeletal Muscle Regeneration." Blood 106, no. 11 (2005): 394. http://dx.doi.org/10.1182/blood.v106.11.394.394.
Pełny tekst źródłaYoshimoto, Momoko, Toshio Heike, Mitsutaka Shiota, Hirohiko Kobayashi, Katsutsugu Umeda, and Tatsutoshi Nakahata. "Hematopoietic Stem Cells Can Give Rise to Satellite-Like Cells in Skeletal Muscles." Blood 104, no. 11 (2004): 2690. http://dx.doi.org/10.1182/blood.v104.11.2690.2690.
Pełny tekst źródłaHeslop, L., J. E. Morgan, and T. A. Partridge. "Evidence for a myogenic stem cell that is exhausted in dystrophic muscle." Journal of Cell Science 113, no. 12 (2000): 2299–308. http://dx.doi.org/10.1242/jcs.113.12.2299.
Pełny tekst źródłaAzab, Azab. "Skeletal Muscles: Insight into Embryonic Development, Satellite Cells, Histology, Ultrastructure, Innervation, Contraction and Relaxation, Causes, Pathophysiology, and Treatment of Volumetric Muscle I." Biotechnology and Bioprocessing 2, no. 4 (2021): 01–17. http://dx.doi.org/10.31579/2766-2314/038.
Pełny tekst źródłaZikic, Dragan, Slobodan Stojanovic, Mirjana Djukic-Stojcic, Zdenko Kanacki, Verica Milosevic, and Gordana Uscebrka. "Morphological characteristics of breast and thigh muscles of slow- and medium growing strains of chickens." Biotehnologija u stocarstvu 32, no. 1 (2016): 27–35. http://dx.doi.org/10.2298/bah1601027z.
Pełny tekst źródłaZhang, Zihao, Shudai Lin, Wen Luo, et al. "Sox6 Differentially Regulates Inherited Myogenic Abilities and Muscle Fiber Types of Satellite Cells Derived from Fast- and Slow-Type Muscles." International Journal of Molecular Sciences 23, no. 19 (2022): 11327. http://dx.doi.org/10.3390/ijms231911327.
Pełny tekst źródłaZhao, Shudong, Jishizhan Chen, Lei Wu, Xin Tao, Naheem Yaqub, and Jinke Chang. "Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles." International Journal of Molecular Sciences 24, no. 14 (2023): 11520. http://dx.doi.org/10.3390/ijms241411520.
Pełny tekst źródłaFukuda, K., Y. Tanigawa, G. Fujii, S. Yasugi, and S. Hirohashi. "cFKBP/SMAP; a novel molecule involved in the regulation of smooth muscle differentiation." Development 125, no. 18 (1998): 3535–42. http://dx.doi.org/10.1242/dev.125.18.3535.
Pełny tekst źródłaMitchell, Patrick O., and Grace K. Pavlath. "Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells." American Journal of Physiology-Cell Physiology 287, no. 6 (2004): C1753—C1762. http://dx.doi.org/10.1152/ajpcell.00292.2004.
Pełny tekst źródłaArdizzi, J. P., and H. F. Epstein. "Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans." Journal of Cell Biology 105, no. 6 (1987): 2763–70. http://dx.doi.org/10.1083/jcb.105.6.2763.
Pełny tekst źródłaChalla, Stalin Reddy, and Swathi Goli. "Differentiation of Human Embryonic Stem Cells into Engrafting Myogenic Precursor Cells." Stem cell Research and Therapeutics International 1, no. 1 (2019): 01–05. http://dx.doi.org/10.31579/2643-1912/002.
Pełny tekst źródłaMañas-García, Laura, Maria Guitart, Xavier Duran, and Esther Barreiro. "Satellite Cells and Markers of Muscle Regeneration during Unloading and Reloading: Effects of Treatment with Resveratrol and Curcumin." Nutrients 12, no. 6 (2020): 1870. http://dx.doi.org/10.3390/nu12061870.
Pełny tekst źródłaSzewczyk, N. J., J. J. Hartman, S. J. Barmada, and L. A. Jacobson. "Genetic defects in acetylcholine signalling promote protein degradation in muscle cells of Caenorhabditis elegans." Journal of Cell Science 113, no. 11 (2000): 2003–10. http://dx.doi.org/10.1242/jcs.113.11.2003.
Pełny tekst źródłaTorrente, Yuan, Jacques-P. Tremblay, Federica Pisati, et al. "Intraarterial Injection of Muscle-Derived Cd34+Sca-1+ Stem Cells Restores Dystrophin in mdx Mice." Journal of Cell Biology 152, no. 2 (2001): 335–48. http://dx.doi.org/10.1083/jcb.152.2.335.
Pełny tekst źródłaConnor, E. A., and U. J. McMahan. "Cell accumulation in the junctional region of denervated muscle." Journal of Cell Biology 104, no. 1 (1987): 109–20. http://dx.doi.org/10.1083/jcb.104.1.109.
Pełny tekst źródłaCIECIERSKA, ANNA, TOMASZ SADKOWSKI, and TOMASZ MOTYL. "Role of satellite cells in growth and regeneration of skeletal muscles." Medycyna Weterynaryjna 75, no. 11 (2019): 6349–2019. http://dx.doi.org/10.21521/mw.6349.
Pełny tekst źródłaBalch, Ying. "Subculture human skeletal muscle cells to produce the cells with different Culture medium compositions." Clinical Research and Clinical Trials 3, no. 4 (2021): 01–03. http://dx.doi.org/10.31579/2693-4779/036.
Pełny tekst źródłaRosenberg, N. L., and B. L. Kotzin. "Aberrant expression of class II MHC antigens by skeletal muscle endothelial cells in experimental autoimmune myositis." Journal of Immunology 142, no. 12 (1989): 4289–94. http://dx.doi.org/10.4049/jimmunol.142.12.4289.
Pełny tekst źródłaČížková, Dana, J. Vávrová, S. Mičuda, et al. "Role of Transplanted Bone Marrow Cells in Response to Skeletal Muscle Injury." Folia Biologica 57, no. 6 (2011): 232–41. http://dx.doi.org/10.14712/fb2011057060232.
Pełny tekst źródłaRobson, L. G. "Cellular patterning of fast and slow fibres in the intermandibularis muscle of chick embryos." Development 117, no. 1 (1993): 329–39. http://dx.doi.org/10.1242/dev.117.1.329.
Pełny tekst źródłaMuskiewicz, Kristina R., Natasha Y. Frank, Alan F. Flint, and Emanuela Gussoni. "Myogenic Potential of Muscle Side and Main Population Cells after Intravenous Injection into Sub-lethally Irradiated mdx Mice." Journal of Histochemistry & Cytochemistry 53, no. 7 (2005): 861–73. http://dx.doi.org/10.1369/jhc.4a6573.2005.
Pełny tekst źródłaSanders, Kenton M., Sean M. Ward, and Sang Don Koh. "Interstitial Cells: Regulators of Smooth Muscle Function." Physiological Reviews 94, no. 3 (2014): 859–907. http://dx.doi.org/10.1152/physrev.00037.2013.
Pełny tekst źródłaCarvajal Monroy, P. L., S. Grefte, A. M. Kuijpers-Jagtman, J. W. Von den Hoff, and F. A. D. T. G. Wagener. "Neonatal Satellite Cells Form Small Myotubes In Vitro." Journal of Dental Research 96, no. 3 (2016): 331–38. http://dx.doi.org/10.1177/0022034516679136.
Pełny tekst źródłaMorgan, Jennifer E., and Terence A. Partridge. "Muscle satellite cells." International Journal of Biochemistry & Cell Biology 35, no. 8 (2003): 1151–56. http://dx.doi.org/10.1016/s1357-2725(03)00042-6.
Pełny tekst źródłaVisan, Ioana. "Muscle Treg cells." Nature Immunology 15, no. 2 (2014): 142. http://dx.doi.org/10.1038/ni.2818.
Pełny tekst źródłaTedgui, Alain, and Ziad Mallat. "Smooth Muscle Cells." Circulation Research 87, no. 2 (2000): 81–82. http://dx.doi.org/10.1161/01.res.87.2.81.
Pełny tekst źródłaRelaix, Frédéric, and Christophe Marcelle. "Muscle stem cells." Current Opinion in Cell Biology 21, no. 6 (2009): 748–53. http://dx.doi.org/10.1016/j.ceb.2009.10.002.
Pełny tekst źródłaFeige, Peter, and Michael A. Rudnicki. "Muscle stem cells." Current Biology 28, no. 10 (2018): R589—R590. http://dx.doi.org/10.1016/j.cub.2018.02.064.
Pełny tekst źródłaGoldring, Kirstin, Terence Partridge, and Diana Watt. "Muscle stem cells." Journal of Pathology 197, no. 4 (2002): 457–67. http://dx.doi.org/10.1002/path.1157.
Pełny tekst źródłaBroadie, K. S., and M. Bate. "The development of adult muscles in Drosophila: ablation of identified muscle precursor cells." Development 113, no. 1 (1991): 103–18. http://dx.doi.org/10.1242/dev.113.1.103.
Pełny tekst źródłaCevik, Hilal, Isabelle Gangadin, Justin G. Boyer, Douglas Millay, and Stephen N. Waggoner. "Key contribution of NK cells to inflammation after muscle injury." Journal of Immunology 208, no. 1_Supplement (2022): 165.14. http://dx.doi.org/10.4049/jimmunol.208.supp.165.14.
Pełny tekst źródłaDumont, Nicolas A., C. Florian Bentzinger, Marie‐Claude Sincennes, and Michael A. Rudnicki. "Satellite Cells and Skeletal Muscle Regeneration." Comprehensive Physiology 5, no. 3 (2015): 1027–59. https://doi.org/10.1002/j.2040-4603.2015.tb00646.x.
Pełny tekst źródłaČížková, Dana, Z. Komárková, A. Bezrouk, et al. "Bone Marrow-Derived Cells Participate in Composition of the Satellite Cell Niche in Intact and Regenerating Mouse Skeletal Muscle." Folia Biologica 64, no. 5 (2018): 155–66. http://dx.doi.org/10.14712/fb2018064050155.
Pełny tekst źródłaYamane, Akira, Satonari Akutsu, Thomas G. H. Diekwisch, and Ryoichi Matsuda. "Satellite cells and utrophin are not directly correlated with the degree of skeletal muscle damage in mdx mice." American Journal of Physiology-Cell Physiology 289, no. 1 (2005): C42—C48. http://dx.doi.org/10.1152/ajpcell.00577.2004.
Pełny tekst źródłaMedvedev, M. A., M. B. Baskakov, S. V. Gusakova, et al. "Mechanisms of regulation electric and contractile activity smooth muscle cells: the role of cytoskeleton." Bulletin of Siberian Medicine 7, no. 4 (2008): 31–37. http://dx.doi.org/10.20538/1682-0363-2008-4-31-37.
Pełny tekst źródłaEržen, Ida. "PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY." Image Analysis & Stereology 23, no. 3 (2011): 143. http://dx.doi.org/10.5566/ias.v23.p143-152.
Pełny tekst źródłaHarfe, B. D., C. S. Branda, M. Krause, M. J. Stern, and A. Fire. "MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm." Development 125, no. 13 (1998): 2479–88. http://dx.doi.org/10.1242/dev.125.13.2479.
Pełny tekst źródłaContreras-Muñoz, Paola, Joan Ramón Torrella, Vanessa Venegas, et al. "Muscle Precursor Cells Enhance Functional Muscle Recovery and Show Synergistic Effects With Postinjury Treadmill Exercise in a Muscle Injury Model in Rats." American Journal of Sports Medicine 49, no. 4 (2021): 1073–85. http://dx.doi.org/10.1177/0363546521989235.
Pełny tekst źródłaMorawin, Barbara, and Agnieszka Zembroń-Łacny. "Role of endocrine factors and stem cells in skeletal muscle regeneration." Postępy Higieny i Medycyny Doświadczalnej 75 (June 2, 2021): 371–84. http://dx.doi.org/10.5604/01.3001.0014.9125.
Pełny tekst źródłaVolk, T., and K. VijayRaghavan. "A central role for epidermal segment border cells in the induction of muscle patterning in the Drosophila embryo." Development 120, no. 1 (1994): 59–70. http://dx.doi.org/10.1242/dev.120.1.59.
Pełny tekst źródłaPark, Jinryong, Jeongeun Lee, Ki-Duk Song, et al. "Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes." Animal Bioscience 34, no. 8 (2021): 1392–402. http://dx.doi.org/10.5713/ab.20.0585.
Pełny tekst źródłaDeyhle, Michael R., Chandler S. Callaway, Daria Neyroud, Andrew C. D’Lugos, Sarah M. Judge, and Andrew R. Judge. "Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy." Cells 11, no. 12 (2022): 1893. http://dx.doi.org/10.3390/cells11121893.
Pełny tekst źródłaTatsumi, Ryuichi, Xiaosong Liu, Antonio Pulido, et al. "Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor." American Journal of Physiology-Cell Physiology 290, no. 6 (2006): C1487—C1494. http://dx.doi.org/10.1152/ajpcell.00513.2005.
Pełny tekst źródłaRushton, E., R. Drysdale, S. M. Abmayr, A. M. Michelson, and M. Bate. "Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development." Development 121, no. 7 (1995): 1979–88. http://dx.doi.org/10.1242/dev.121.7.1979.
Pełny tekst źródłaNelson, J. S., M. A. Meredith, and B. E. Stein. "Does an extraocular proprioceptive signal reach the superior colliculus?" Journal of Neurophysiology 62, no. 6 (1989): 1360–74. http://dx.doi.org/10.1152/jn.1989.62.6.1360.
Pełny tekst źródłaSanders, Kenton M., Yoshihiko Kito, Sung Jin Hwang, and Sean M. Ward. "Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells." Physiology 31, no. 5 (2016): 316–26. http://dx.doi.org/10.1152/physiol.00006.2016.
Pełny tekst źródłaFukada, So-ichiro, Yuko Miyagoe-Suzuki, Hiroshi Tsukihara, et al. "Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice." Journal of Cell Science 115, no. 6 (2002): 1285–93. http://dx.doi.org/10.1242/jcs.115.6.1285.
Pełny tekst źródłaNobuyoshi, Masaharu, Akihiro Kume, Hiroaki Mizukami, et al. "Hematopoietic Transdifferentiation of Muscle-Derived Cells after In Vivo Transient Expression of MSX1 Transcription Factor." Blood 104, no. 11 (2004): 2689. http://dx.doi.org/10.1182/blood.v104.11.2689.2689.
Pełny tekst źródła